SAR Test Report

Report No.:STS2308301H01

Issued for

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD

202, Building A2, Silicon Valley Power Intelligent Terminal Industrial Park, No. 20, Dafu Industrial Zone, Kukeng Community, Guanlan Street, Longhua District, Shenzhen China

Product Name:	Smart Phone
Brand Name:	OUKITEL
Model Name:	WP30 Pro
Series Model(s):	WP30, WP30 S, WP30 Ultra, WP30 TITAN
Test Standards:	EN 50360: 2017; EN 50566:2017 EN IEC/IEEE 62209-1528:2021 EN 50663: 2017; EN 62479: 2010
	Head: 1.194 W/kg
Max. SAR (10g)	Body: 0.961 W/kg

Limbs: 2.284 W/kg

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, all test data presented in this report is only applicable to presented test sample.

TEST REPORT

Applicant's Name	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD
Address :	202, Building A2, Silicon Valley Power Intelligent Terminal Industrial Park, No. 20, Dafu Industrial Zone, Kukeng Community, Guanlan Street, Longhua District, Shenzhen China
Manufacturer's Name	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD
Address:	202, Building A2, Silicon Valley Power Intelligent Terminal Industrial Park, No. 20, Dafu Industrial Zone, Kukeng Community, Guanlan Street, Longhua District, Shenzhen China
Product Description	
Product Name:	Smart Phone
Brand Name:	OUKITEL
Model Name:	WP30 Pro
Series Model(s) :	WP30, WP30 S, WP30 Ultra, WP30 TITAN
Test Standards :	EN 50360: 2017; EN 50566: 2017 EN IEC/IEEE 62209-1528:2021 EN 50663: 2017; EN 62479: 2010
	ed except in full, without the written approval of STS, this document S, personal only, and shall be noted in the revision of the document.
Data (Tat	

Date of Test

Test Result:	Pass
Date of Issue:	20 Sep. 2023
Date (s) of performance of tests:	29 Aug. 2023

Testing Engineer

2

2

Shi tan long

(Shifan. Long)

Technical Manager

Jean She

(Sean she)

Authorized Signatory :

hover 10

(Bovey Yang)

Table of Contents

1. General Information	5
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
2. Test Standards and Limits	7
3. SAR Measurement System	8
3.1 Definition of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	13
5.1 Validation System	13
5.2 Validation Result	13
6. SAR Evaluation Procedures	14
7. EUT Test Position	15
7.1 Cheek Position	15
7.2 Tilt Position	16
7.3 Body-worn Position Conditions	16
8. Measurement Uncertainty	17
9. Conducted Power Measurement	18
9.1 Tune up power	22
10. Test Photos and Results	23
10.1 EUT Photos	23
10.2 Setup Photos	26
11. SAR Result Summary	35
11.1 Head SAR	35
11.2 Body SAR	36
11.3 Limbs SAR	37
12. Equipment List	38
Appendix A. System Validation Plots	39
Appendix B. SAR Test Plots	41
Appendix C. Probe Calibration and Dipole Calibration Report	44

Page 4 of 44

Report No.:STS2308301H01

Revision History

F	Rev. Issue Date		Report No.	Effect Page	Contents	
	00 20 Sep. 2023		STS2308301H01	ALL	Initial Issue	
		1	~	2	9	

1. General Information

1.1 EUT Description

Des durat Marsa	Smart Phone		110	11					
Product Name									
Brand Name	OUKITEL								
Model Name	WP30 Pro	NP30 Pro							
Series Model	WP30, WP30 S, WP30 Ultra, WP30 TITAN								
Model Difference		All the model are the same circuit and RF module, except model names and appearance of the color.							
Hardware Version	M159-MUB-V2								
Software Version	OUKITEL_WP30_F	20230804°ro_V09_20230804	4						
Frequency Range	5G N78: 3300 MHz to 3800 MHz LTE B1: 1920 MHz to 1980 MHz FM: 87.5 MHz to 108 MHz								
Mary Damastad	Mode	Head(W/Kg)	Body and Hotspot (W/ kg)	Limbs and Hotspot(W/Kg					
Max. Reported	NR SA N78	0.533	0.551	1.374					
SAR(10g)	NR NSA B1+N78	1.194	0.961	2.284					
	Limit	2.0	4.0 W/kg						
Battery	Rated Voltage: 7.74 Charge Limit Voltag Capacity: 5500mAh	je:8.9V	10						
Modulation Mode		$(\pi/2 \text{ shift BPSK, QPSK, 16QAM, 64QAM, 256QAM})$							
Antenna	5G NR: PIFA Anten	na							
Specification:	LTE: PIFA Antenna FM: Earphone Ante	nna							
Operating Mode:	Maximum continuo								

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required	11
Temperature (°C)	18-25	6
Humidity (%RH)	30-70	

1.3 Test Factory

ShenZhen STS Test Services Co.,Ltd.

101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC Registration No.: 625569

A2LA Certificate No.: 4338.01

IC Registration No.: 12108A

2. Test Standards and Limits

No.	Identity	Document Title
1	EN 50360: 2017	Product standard to demonstrate the compliance of wireless communication devices, with the basic restrictions and exposure limit values related to human exposure to electromagnetic fields in the frequency range from 300 MHz to 6 GHz: devices used next to the ear
2	EN 50566: 2017	Product standard to demonstrate the compliance of wireless communication devices with the basic restrictions and exposure limit values related to human exposure to electromagnetic fields in the frequency range from 30 MHz to 6 GHz: hand-held and body mounted devices in close proximity to the human body
3	EN IEC/IEEE 62209-1528: 2021	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body- mounted wireless communication devices Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)
4	EN 50663: 2017	Generic standard for assessment of low power electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (10MHz to 300GHz)
5	EN 62479: 2010	Assessment of the compliance of low-power electronic and electrical equipment with the restrictions related to human exposure to electromagnetic fields(10 MHz to 300 GHz)

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. According to EN 50360 and 1999/519/EC the limit for General Population/Uncontrolled exposure should be applied for this device, it is 2.0 W/kg as averaged over any 10 gram of tissue.

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

<u>Whole-Body</u>	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	2.0	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 10 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 2.0 W/kg PARTIAL LIMBS LIMIT 4.0 W/kg

3. SAR Measurement System

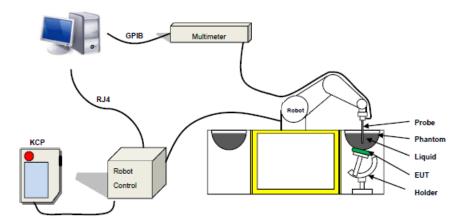
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue;

 ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items: - Main computer to control all the system

- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Page 9 of 44

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The Open AR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 07/21 EPGO352 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 150 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

SN 32/14 SAM115

Figure-SN 21/21 ELLI48

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of ± 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max _ 5 %) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability For 10 g averaging, the maximum weighting coefficient for SAR is 0,5.

EN 62209 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and body tissue dielectric parameters recommended by the EN 62209 have been incorporated in the following table.

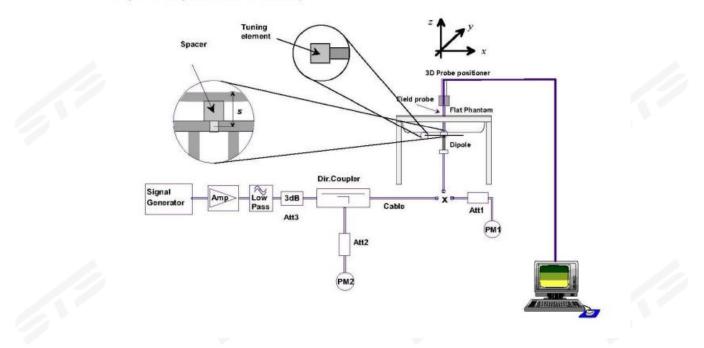
	з		σ 10g (S/m)		
Frequency	Head	Body	Head	Body	
300	45.3	45.3	0.87	0.87	
450	43.5	43.5	0.87	0.87	
900	41.5	41.5	0.97	0.97	
1450	40.5	40.5	1.20	1.20	
1800	40.0	40.0	1.40	1.40	
2450	39.2	39.2	1.80	1.80	
3000	38.5	38.5	2.40	2.40	
5200	36.0	36.0	4.70	4.70	

Page 12 of 44

Report No.:STS2308301H01

LIQUID MEASUREMENT RESULTS

Date	Ambient		Simulating Liquid		Deversetere	-		Deviation	Limited
	Temp. [°C]	Humidity %	Frequency (MHz)	Temp. [°C]	Parameters	Target	Measured	%	%
2022 08 20	22.9	50	2450	22.5	Permittivity	37.96	38.36	1.05	±10
2023-08-29	22.9	50	3450		Conductivity	2.86	2.95	3.18	±10
2022 08 20	22.9	50	3500	22.7	Permittivity	37.90	38.69	2.08	±10
2023-08-29	22.9	50	3300	22.1	Conductivity	2.91	2.96	1.72	±10
	22.9	50	3600	22.6	Permittivity	37.78	37.94	0.42	±10
2023-08-29	22.9	50	3600	22.0	Conductivity	3.01	2.95	-2.06	±10
2022 08 20	22.0	50	2750	22.7	Permittivity	37.60	37.92	0.85	±10
2023-08-29	23.0	50	3750		Conductivity	3.17	3.12	-1.42	±10
and the second s		1					1		



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of ± 10 %.

Date	Freq.	Power	Power drift	Tested Value	Normalized SAR	Target SAR	Tolerance
	(MHz)	(mW)	(%)	(W/Kg)	(W/kg)	10g(W/kg)	(%)
2023-08-29	3500	100	-3.34	2.606	26.06	25.50	2.20

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

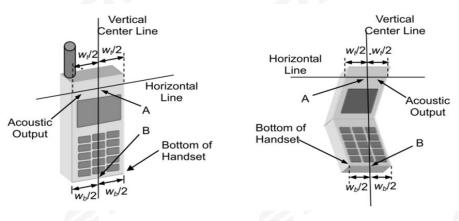
Area Scan& Zoom Scan:

For handsets operating above 300 MHz evaluated with the homogeneous head model, the SAR distribution is measured on a two-dimensional coarse grid at a fixed separation distance of less than 8 mm from the surface of the phantom shell. The scan region should cover all areas that are exposed and encompassed by the projection of the handset. In order to maintain a fixed distance of less than 8 mm from the surface to within ±1 mm, as required by the measurement protocol, the exact shape and dimensions of the phantom inner surface shall be known, pre-calibrated, or preferably detected during the SAR measurement with a mechanical or optical surface-detection mechanism that meets the probe positioning requirements. This evaluation technique determines the maximum spacing between the grid points, i.e., it has been found that a 20 mm × 20 mm grid is usually sufficient to achieve the required precision if two staggered one-dimensional cubic splines [55] are used to locate the maximum SAR location;.

The maximum local SAR is evaluated on an interpolated grid at 1 mm to 2 mm resolution during the zoom scan. A zoom-scan volume of 32 mm x 32 mm x 30 mm, consisting of 5 x 5 x 7 points with the center at the peak SAR location determined during the area scan, can be chosen. Although a scan resolution of 8 mm is sufficient for directions parallel to the surface, 5 mm is needed in the direction normal to the surface of the phantom to achieve the required extrapolation accuracy.

Page 15 of 44

7. EUT Test Position


This EUT was tested in Right Cheek, Right Titled, Left Cheek, Left Titled, Front Face and Rear Face.

Define Two Imaginary Lines On The Handset:

1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.

2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.

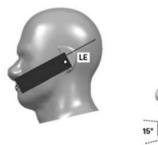
3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

7.1 Cheek Position

1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.

2) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

RE



7.2 Tilt Position

(1) To position the device in the "cheek" position described above.

(2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.

7.3 Body-worn Position Conditions

- 1) To position the EUT parallel to the phantom surface.
- 2) To adjust the EUT parallel to the flat phantom.
- 3) To adjust the distance between the EUT surface and the flat phantom to 5mm.

8. Measurement Uncertainty

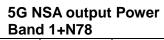
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

using a co	verage factor of k=2.							
Symbol	Uncertainty Component	Prob. Dist.	Unc. a(x _i)	Div. q _i	$u(x_i) = a(x_i)/q_i$	Ci	$u(y) = C_i$ * $u(x_i)$	Vi
	Meas	surement	system e	rrors				
CF	Probe calibration	N (k = 2)	5.72	2	2.86	1	2.86	∞
CF _{drift}	Probe calibration drift	R	0.15	√3	0.09	1	0.09	∞
LIN	Probe linearity and detection limit	R	1.27	√3	0.73	1	0.73	∞
BBS	Broadband signal	R	0.12	√3	0.07	1	0.07	∞
ISO	Probe isotropy	R	0.16	√3	0.09	1	0.09	∞
DAE	Other probe and data acquisition errors	Ν	2.4	1	2.40	1	2.40	∞
AMB	RF ambient and noise	Ν	3.51	1	3.51	1	3.51	∞
Δ _{xyz}	Probe positioning errors	Ν	1.2	1	1.20	2/δ	1.20	
DAT	Data processing errors	Ν	2.1	1	2.10	1	2.10	∞
	Phantom and devi	ce (DUT o	or validati	on anten	na) errors			
LIQ(σ)	Measurement of phantom conductivity(σ)	Ν	4.1	1	4.1	C ε, Cσ	4.10	∞
LIQ(T _c)	Temperature effects (medium)	R	2.7	√3	1.56	Cε, Cσ	1.56	8
EPS	Shell permittivity	R	2.1	√3	1.21	See 8.4.2.3	0.30	∞
DIS	Distance between the radiating element of the DUT and the phantom medium	Ν	0.7	1	0.7	2	1.40	8
D _{xyz}	Repeatability of positioning the DUT or source against the phantom	Ν	1.2	1	1.2	1	1.20	5
Н	Device holder effects	Ν	3.8	1	3.8	1	3.80	
MOD	Effect of operating mode on probe sensitivity	R	3.42	√3	1.97	1	1.97	∞
TAS	Time-average SAR	R	1.8	√3	1.04	1	1.04	∞
RF drift	Variation in SAR due to drift in output of DUT	Ν	4.5	1	4.5	1	4.50	
VAL	Validation antenna uncertainty (validation measurement only)	Ν	1.4	1	1.4	1	1.40	
Pin	Uncertainty in accepted power (validation measurement only)	Ν	2.4	1	2.4	1	2.40	
	Correction	s to the S	AR result	(if applie	ed)			
C(ε΄,σ)	Phantom deviation from target (ε΄,σ))	Ν	3.7	1	3.7	1	3.70	
C(R)	SAR scaling	R	1.8	√3	1.04	1	1.04	
u(ΔSAR)	Combined uncertainty						10.84	
U	Expanded uncertainty and effective degrees of freedom					U =	21.68	

9. Conducted Power Measurement

5G SA output Power

	1.00						T		
1	SCS	Bandwidth	UL	RB		Power	Low	high	
Band	(kHz)	(MHz)	Channel	Allocation	Modulation	(dBm)	Limit	Limit	Verdict
1		54					(dBm)	(dBm)	
n78	30	20	620668	25@12	DFT_BPSK	24.08	19	26	PASS
n78	30	20	620668	1@1	DFT_BPSK	23.99	19	26	PASS
n78	30	20	620668	1@49	DFT_BPSK	23.93	19	26	PASS
n78	30	20	620668	25@12	DFT_QPSK	23.97	19	26	PASS
n78	30	20	620668	1@1	DFT_QPSK	23.94	19	26	PASS
n78	30	20	620668	1@49	DFT_QPSK	23.86	19	26	PASS
n78	30	20	636666	25@12	DFT_BPSK	24.53	19	26	PASS
n78	30	20	636666	1@1	DFT_BPSK	24.33	19	26	PASS
n78	30	20	636666	1@49	DFT_BPSK	24.43	19	26	PASS
n78	30	20	636666	25@12	DFT_QPSK	24.45	19	26	PASS
n78	30	20	636666	1@1	DFT_QPSK	24.32	19	26	PASS
n78	30	20	636666	1@49	DFT_QPSK	24.35	19	26	PASS
n78	30	20	652666	25@12	DFT_BPSK	25.02	19	26	PASS
n78	30	20	652666	1@1	DFT_BPSK	24.77	19	26	PASS
n78	30	20	652666	1@49	DFT_BPSK	24.93	19	26	PASS
n78	30	20	652666	25@12	DFT_QPSK	24.96	19	26	PASS
n78	30	20	652666	1@1	DFT_QPSK	24.76	19	26	PASS
n78	30	20	652666	1@49	DFT_QPSK	24.99	19	26	PASS
n78	30	50	621668	64@32	DFT_BPSK	24.10	19	26	PASS
n78	30	50	621668	1@1	DFT_BPSK	23.92	19	26	PASS
n78	30	50	621668	1@131	DFT_BPSK	23.84	19	26	PASS
n78	30	50	621668	64@32	DFT_QPSK	24.10	19	26	PASS
n78	30	50	621668	1@1	DFT_QPSK	23.86	19	26	PASS
n78	30	50	621668	1@131	DFT_QPSK	23.84	19	26	PASS
n78	30	50	636666	64@32	DFT_BPSK	24.45	19	26	PASS
n78	30	50	636666	1@1	DFT BPSK	24.07	19	26	PASS
n78	30	50	636666	1@131	 DFT_BPSK	24.28	19	26	PASS
n78	30	50	636666	64@32	 DFT_QPSK	24.51	19	26	PASS
n78	30	50	636666	1@1	DFT_QPSK	24.13	19	26	PASS
n78	30	50	636666	1@131	DFT QPSK	24.29	19	26	PASS
n78	30	50	651666	64@32	DFT BPSK	24. 55	19	26	PASS
n78	30	50	651666	1@1	DFT BPSK	23.99	19	26	PASS
n78	30	50	651666	1@131	DFT BPSK	24.77	19	26	PASS


Page 19 of 44

Report No.:STS2308301H01

n78	30	50	651666	64@32	DFT_QPSK	24.46	19	26	PASS
n78	30	50	651666	1@1	DFT_QPSK	24.04	19	26	PASS
n78	30	50	651666	1@131	DFT_QPSK	24.76	19	26	PASS
n78	30	100	623334	135@67	DFT_BPSK	23.95	19	26	PASS
n78	30	100	623334	1@1	DFT_BPSK	23.07	19	26	PASS
n78	30	100	623334	1@271	DFT_BPSK	23.34	19	26	PASS
n78	30	100	623334	135@67	DFT_QPSK	23.98	19	26	PASS
n78	30	100	623334	1@1	DFT_QPSK	23.08	19	26	PASS
n78	30	100	623334	1@271	DFT_QPSK	23.36	19	26	PASS
n78	30	100	636666	135@67	DFT_BPSK	24.39	19	26	PASS
n78	30	100	636666	1@1	DFT_BPSK	23.39	19	26	PASS
n78	30	100	636666	1@271	DFT_BPSK	23.50	19	26	PASS
n78	30	100	636666	135@67	DFT_QPSK	24.40	19	26	PASS
n78	30	100	636666	1@1	DFT_QPSK	23.40	19	26	PASS
n78	30	100	636666	1@271	DFT_QPSK	23.46	19	26	PASS
n78	30	100	650000	135@67	DFT_BPSK	24.28	19	26	PASS
n78	30	100	650000	1@1	DFT_BPSK	23.66	19	26	PASS
n78	30	100	650000	1@271	DFT_BPSK	24.22	19	26	PASS
n78	30	100	650000	135@67	DFT_QPSK	24.28	19	26	PASS
n78	30	100	650000	1@1	DFT_QPSK	23.61	19	26	PASS
n78	30	100	650000	1@271	DFT_QPSK	24.22	19	26	PASS

Dond	SCS	Bandwidth	UL	RB	Modulation	Power	Low	high Limit	Vandiat
Band	(kHz)	(MHz)	Channel	Allocation	MODULATION	(dBm)	Limit (dBm)	Limit (dBm)	Verdict
Band1	30	5	18025	1@LOW	QPSK	19.52			
n78	30	10	620334	1@0	DFT BPSK	21.12			
Sum	30					23.4	19	26	PASS
Band1	30	5	18025	8@LOW	QPSK	19.49			
n78	30	10	620334	12@6	DFT BPSK	23.34			
Sum	30					24.83	19	26	PASS
Band1	30	5	18025	1@LOW	QPSK	19.5			
n78	30	10	620334	1@0	DFT QPSK	21.04		615	
Sum	30	1			1	23.34	19	26	PASS
Band1	30	5	18025	8@LOW	QPSK	19.45			
n78	30	10	620334	12@6	DFT QPSK	23.32			
Sum	30					24.81	19	26	PASS
Band1	30	5	18300	8@LOW	QPSK	19.44			
n78	30	10	636666	12@6	DFT BPSK	23.77			
Sum	30					25.13	19	26	PASS
Band1	30	5	18300	8@LOW	QPSK	19.42		6.55	
n78	30	10	636666	12@6	DFT QPSK	23.78			
Sum	30					25.13	19	26	PASS
Band1	30	5	18575	1@HIGH	QPSK	19.45			
n78	30	10	653000	1@23	DFT BPSK	22			
Sum	30					23.91	19	26	PASS
Band1	30	5	18575	8@HIGH	QPSK	19.42			
n78	30	10	653000	12@6	DFT BPSK	24.25			
Sum	30		18		15	25.48	19	26	PASS
Band1	30	5	18575	1@HIGH	QPSK	19.49			
n78	30	10	653000	1@23	DFT QPSK	21.99			
Sum	30					23.92	19	26	PASS
Band1	30	5	18575	8@HIGH	QPSK	19.43			1
n78	30	10	653000	12@6	DFT QPSK	24.24			
Sum	30					25.47	19	26	PASS
Band1	30	20	18100	1@LOW	QPSK	19.47			
n78	30	100	623334	1@0	DFT BPSK	19.95		150	
Sum	30	1				22.72	19	26	PASS
Band1	30	20	18100	18@LOW	QPSK	19.37			1

Page 21 of 44

Report No.:STS2308301H01

n78	30	100	623334	135@67	DFT BPSK	23.14			
Sum	30					24.66	19	26	PASS
Band1	30	20	18100	1@LOW	QPSK	19.43			1
n78	30	100	623334	1@0	DFT QPSK	19.85		100	
Sum	30	11			2	22.65	19	26	PASS
Band1	30	20	18100	18@LOW	QPSK	19.36			
n78	30	100	623334	135@67	DFT QPSK	23.16			
Sum	30					24.67	19	26	PASS
Band1	30	20	18300	18@LOW	QPSK	19.33			
n78	30	100	636666	135@67	DFT BPSK	23.71			
Sum	30					25.06	19	26	PASS
Band1	30	20	18300	18@LOW	QPSK	19.32		180	
n78	30	100	636666	135@67	DFT QPSK	23.74			
Sum	30				77	25.07	19	26	PASS
Band1	30	20	18500	1@HIGH	QPSK	18.89			
n78	30	100	650000	1@272	DFT BPSK	20.6			
Sum	30					22.83	19	26	PASS
Band1	30	20	18500	18@HIGH	QPSK	19.29			
n78	30	100	650000	135@67	DFT BPSK	23. 58			(
Sum	30		100			24.95	19	26	PASS
Band1	30	20	18500	1@HIGH	QPSK	18.86			
n78	30	100	650000	1@272	DFT QPSK	20.47		1	
Sum	30					22.74	19	26	PASS
Band1	30	20	18500	18@HIGH	QPSK	19.32			
n78	30	100	650000	135@67	DFT QPSK	23.57			
Sum	30					24.95	19	26	PASS

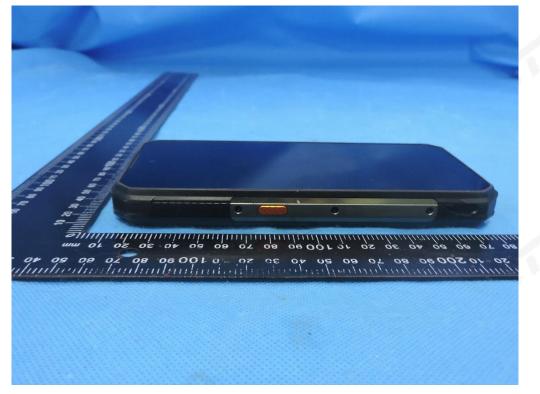
9.1 Tune up power

BW[MHz]	Mode	N78
10	DFT_BPSK	N/A
10	DFT_QPSK	N/A
15	DFT_BPSK	N/A
15	DFT_QPSK	N/A
20	DFT_BPSK	24.5±1dBm
20	DFT_QPSK	24.5±1dBm
30	DFT_BPSK	N/A
30	DFT_QPSK	N/A
50	DFT_BPSK	24±1dBm
50	DFT_QPSK	24±1dBm
80	DFT_BPSK	N/A
80	DFT_QPSK	N/A
100	DFT_BPSK	23.5±1dBm
100	DFT_QPSK	23.5±1dBm

BW[MHz]	Mode	NSA N78+B1
20	DFT_BPSK	24.5±1dBm
20	DFT_QPSK	24.5±1dBm
100	DFT_BPSK	24.1±1dBm
100	DFT_QPSK	24.1±1dBm

10. Test Photos and Results

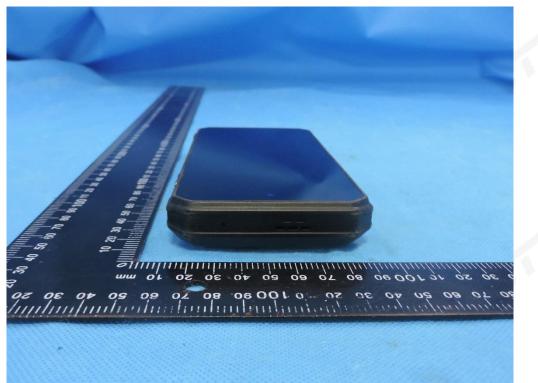
10.1 EUT Photos

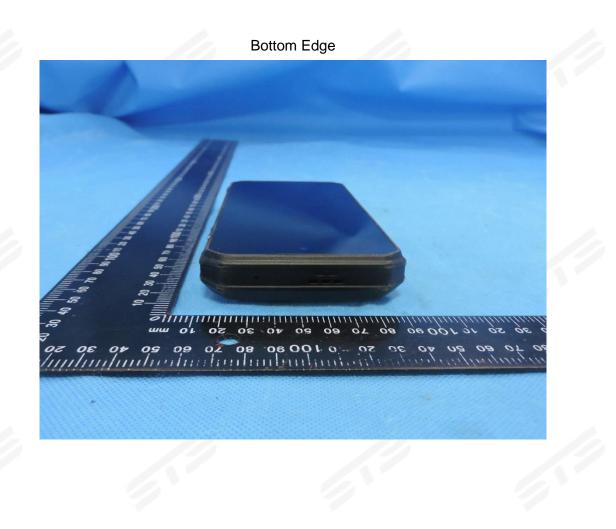

Back side



Page 24 of 44

Left Edge





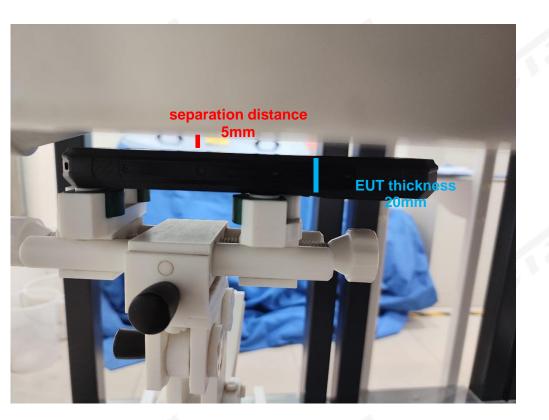
Page 25 of 44

Top Edge

Right Tilt

Page 27 of 44

Left Cheek


Left Tilt

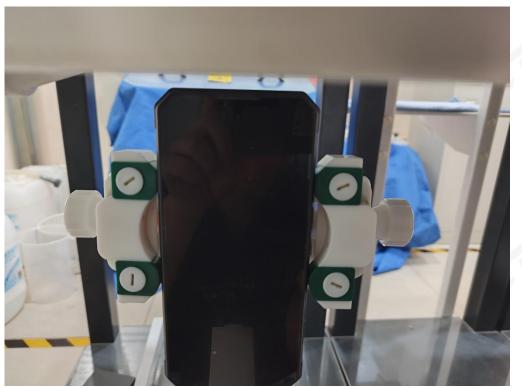
Page 28 of 44

Front Side


Back Side

Page 29 of 44

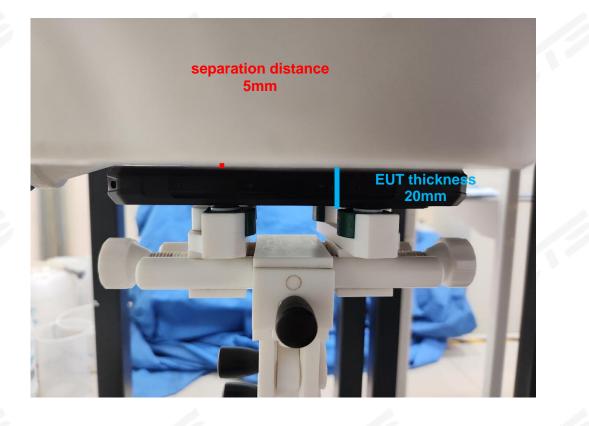
Left Edge


Right Edge

Page 30 of 44

Top Edge

Bottom Edge



Page 31 of 44

Report No.:STS2308301H01

Limbs Front Side

Limbs Back Side

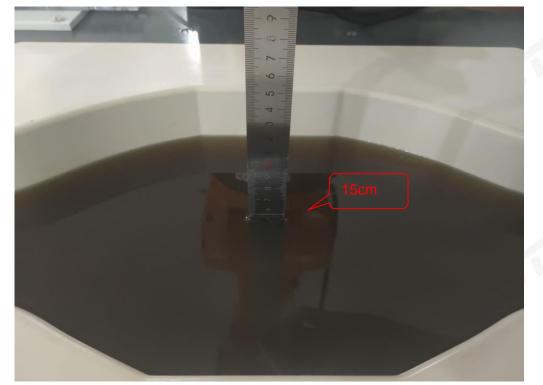
Page 32 of 44

Limbs Left Edge

Limbs Right Edge

Page 33 of 44

Limbs Top Edge



Limbs Bottom Edge

Liquid depth (15 cm)

11. SAR Result Summary

11.1 Head SAR

SA:

Band	Model	Test Position	Freq.	SAR (10g) (W/kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas.No.
		Right Cheek	3600	0.351	-0.84	24.50	24.40	0.359	/
	400MU-	Right Tilt	3600	0.125	3.61	24.50	24.40	0.128	/
	100MHz	Left Cheek	3450	0.432	-1.91	24.50	23.98	0.487	/
SA N78	SA N78 135RB	Left Cheek	3600	0.521	0.06	24.50	24.40	0.533	1
	offset 0	Left Cheek	3750	0.488	-3.41	24.50	24.28	0.513	1
		Left Tilt	3600	0.244	3.57	24.50	24.40	0.250	/

NSA:

		Test		SAR	Power	Max.Turn-up	Meas.Output	Scaled	
Band	Model	Position	Freq.	(10g)	Drift(%)	Power(dBm)	Power(dBm)	SAR	Meas.No.
		Position		(W/kg)	Dint(76)	Fower(ubili)	Fower(ubiii)	(W/Kg)	
		Right Cheek	1930	0.620	-1.23	22.50	22.22	0.661	/
	20MHz	Right Cheek	1950	0.556	2.05	22.50	22.26	0.588	/
LTE Band 1	BW,	Right Cheek	1970	0.385	-0.08	22.50	22.31	0.402	/
	1RB	Right Tilt	1970	0.275	1.71	22.50	22.31	0.287	/
	Offset 0	Left Cheek	1970	0.290	-2.97	22.50	22.31	0.303	/
		Left Tilt	1970	0.257	2.58	22.50	22.31	0.268	/
		Right Cheek	3600	0.351	-0.84	24.50	24.40	0.359	/
	1001411-	Right Tilt	3600	0.125	3.61	24.50	24.40	0.128	/
	100MHz	Left Cheek	3450	0.432	-1.91	24.50	23.98	0.487	/
SA N78	135RB	Left Cheek	3600	0.521	0.06	24.50	24.40	0.533	1
	offset 0	Left Cheek	3750	0.488	-3.41	24.50	24.28	0.513	/
		Left Tilt	3600	0.244	3.57	24.50	24.40	0.250	/

Pond	Mada	Max SAR	NSA N78+B1	
Band	Mode	(W/Kg)	NSA N70+BT	
NSA N78+B1	SA N78	0.533	1 104	
NSA N70+D1	LTE B1	0.661	1.194	

11.2 Body SAR

CΛ	
5A	

Band	Model	Test Position	Freq.	SAR (10g) (W/kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas.No.
		Front Side	3450	0.459	-3.67	24.50	23.98	0.517	/
		Front Side	3600	0.538	-0.12	24.50	24.40	0.551	2
	4000411	Front Side	3750	0.485	2.46	24.50	24.28	0.510	/
	100MHz	Back Side	3600	0.189	-2.62	24.50	24.40	0.193	/
SA N78	135RB	Left Edge	3600	0.519	-2.89	24.50	24.40	0.531	/
	offset 0	Right Edge	3600	0.102	3.91	24.50	24.40	0.104	/
		Top Edge	3600	0.239	0.69	24.50	24.40	0.245	/
		Bottom Edge	3600	0.133	-1.56	24.50	24.40	0.136	/

NSA:

		Test		SAR	Power	Max.Turn-up	Meas.Output	Scaled	
Band	Model	Position	Freq.	(10g)	Drift(%)	Power(dBm)	Power(dBm)	SAR	Meas.No.
				(W/kg)				(W/Kg)	
		Front Side	1950	0.336	1.97	22.50	22.26	0.355	/
	20MHz	Back Side	1950	0.226	0.41	22.50	22.26	0.239	/
LTE Band 1	BW,	Left Edge	1950	0.189	1.46	22.50	22.26	0.200	/
	1RB	Top Edge	1930	0.403	-0.48	22.50	22.22	0.430	/
	Offset 0	Top Edge	1950	0.375	3.81	22.50	22.26	0.396	/
		Top Edge	1970	0.374	2.69	22.50	22.31	0.391	/
		Front Side	3450	0.459	-3.67	24.50	23.98	0.517	/
		Front Side	3600	0.538	-0.12	24.50	24.40	0.551	2
	100141-	Front Side	3750	0.485	2.46	24.50	24.28	0.510	/
	100MHz	Back Side	3600	0.189	-2.62	24.50	24.40	0.193	/
SA N78	135RB offset 0	Left Edge	3600	0.519	-2.89	24.50	24.40	0.531	/
(Unsero	Right Edge	3600	0.102	3.91	24.50	24.40	0.104	/
		Top Edge	3600	0.239	0.69	24.50	24.40	0.245	/
		Bottom Edge	3600	0.133	-1.56	24.50	24.40	0.136	/

Dond	Mada	Max SAR	NSA N78+B1	
Band	Mode	(W/Kg)	NSA N70+DT	
	SA N78	0.531	0.061	
NSA N70+BT	ISA N78+B1		0.961	

Note:

1. The test separation of all above table is 5mm.

2. When the 10g SAR is \leq 1.0W/kg, testing for low and high channel is optional.

11.3 Limbs SAR

Band	Model	Test Position	Freq.	SAR (10g) (W/kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas.No.
		Front Side	3450	1.195	-2.44	24.50	23.98	1.347	/
		Front Side	3600	1.345	2.91	24.50	24.40	1.376	3
	(00)	Front Side	3750	1.202	2.00	24.50	24.28	1.264	/
	100MHz	Back Side	3600	0.264	-3.32	24.50	24.40	0.270	/
SA N78	135RB	Left Edge	3600	0.824	-0.39	24.50	24.40	0.843	/
	offset 0	Right Edge	3600	0.064	3.40	24.50	24.40	0.065	/
19	1	Top Edge	3600	0.354	-1.31	24.50	24.40	0.362	1
		Bottom Edge	3600	0.369	-2.27	24.50	24.40	0.378	/
NSA:		10			1				1

Band	Model	Test Position	Freq.	SAR (10g) (W/kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas.No.
		Front Side	1950	0.752	0.12	22.50	22.26	0.795	/
	20MHz	Back Side	1950	0.307	3.18	22.50	22.26	0.324	/
LTE Dand 1	BW,	Left Edge	1950	0.272	1.65	22.50	22.26	0.287	/
LTE Band 1	1RB	Top Edge	1930	0.805	-3.27	22.50	22.22	0.859	/
11	Offset 0	Top Edge	1950	0.859	-3.19	22.50	22.26	0.908	/
1997 - C.		Top Edge	1970	0.668	-1.38	22.50	22.31	0.698	/
		Front Side	3450	1.195	-2.44	24.50	23.98	1.347	/
		Front Side	3600	1.345	2.91	24.50	24.40	1.376	3
	100141-	Front Side	3750	1.202	2.00	24.50	24.28	1.264	/
	100MHz 135RB	Back Side	3600	0.264	-3.32	24.50	24.40	0.270	/
SA N78	offset 0	Left Edge	3600	0.824	-0.39	24.50	24.40	0.843	1
	onset U	Right Edge	3600	0.064	3.40	24.50	24.40	0.065	1
		Top Edge	3600	0.354	-1.31	24.50	24.40	0.362	/
		Bottom Edge	3600	0.369	-2.27	24.50	24.40	0.378	/

Band	Mode	Max SAR	NSA N78+B1	
		(W/Kg)	NSA N70+DI	
	SA N78	1.376	2 284	
NSA N78+B1	LTE B1	0.908	2.284	

Note:

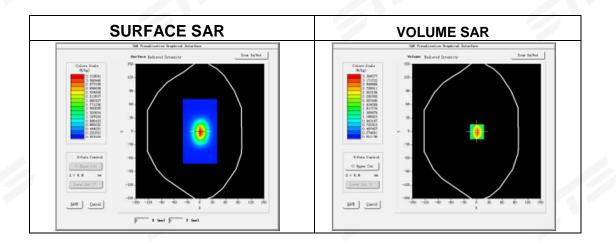
1. The test separation of all above table is 0mm.

2. When the 10g SAR is \leq 2.0W/kg, testing for low and high channel is optional.

12. Equipment List

	SID3500 SSE2 SCLMP	SN 08/21 DIP3G500-553 SN 07/21 EPGO352 SN 32/14	2021.03.01	2024.02.29
		EPGO352	2023.02.24	
	SCLMP	SN 32/17		2024.02.23
		OCPG67	2022.11.15	2023.11.14
	ANTA3	SN 07/13 ZNTA52	N/A	N/A
	SAM	SN 32/14 SAM115	N/A	N/A
	SAM	SN 21/21 ELLI48	N/A	N/A
1. Contraction	N/A	SN 32/14 MSH97	N/A	N/A
8	N/A	SN 3/14 LSH29	N/A	N/A
it	99899	DC-18GHz	N/A	N/A
a	4226-20	3305	N/A	N/A
it	8753ES	US38432810	2022.09.28	2023.09.27
ey Mu	ulti Meter 2000	4050073	2022.09.29	2023.09.28
it	N5182A	MY50140530	2022.09.28	2023.09.27
it 8	3960-E5515C	MY48360751	2022.09.28	2023.09.27
1	CMW500	156324	2022.09.29	2023.09.28
Y	ZHL-42W	9638	2022.10.08	2023.10.07
	NRP	100510	2022.09.28	2023.09.27
	NRP-Z11	101919	2022.09.28	2023.09.27
ht	U2021XA	MY56280002	2022.09.29	2023.09.28
ei	SW-108	N/A	2022.09.30	2023.09.29
n	RC-4	S/N EF7176501537	2022.09.30	2023.09.29
e	ei ch	ei SW-108	ei SW-108 N/A	ei SW-108 N/A 2022.09.30

Appendix A. System Validation Plots

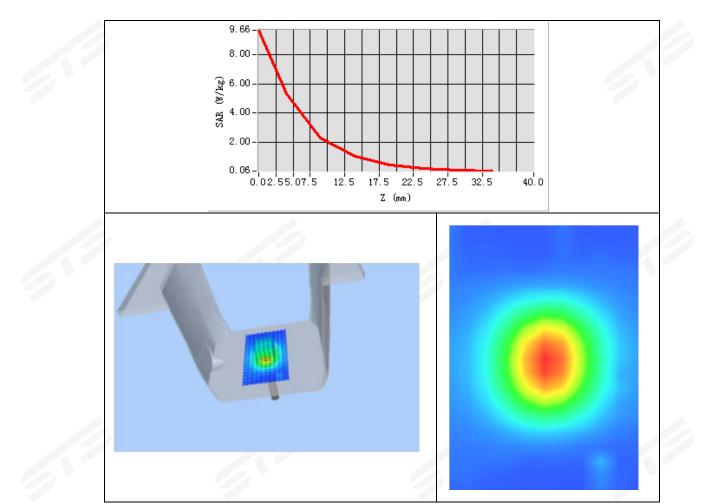

System Performance Check Data (3500MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2023-08-29

Experimental conditions.

Device Position	Validation plane
Band	3500 MHz
Channels	·
Signal	CW
Frequency (MHz)	3500
Relative permittivity	38.69
Conductivity (S/m)	2.96
Probe	SN 07/21 EPGO352
ConvF	1.75
Crest factor:	1:1

Page 39 of 44

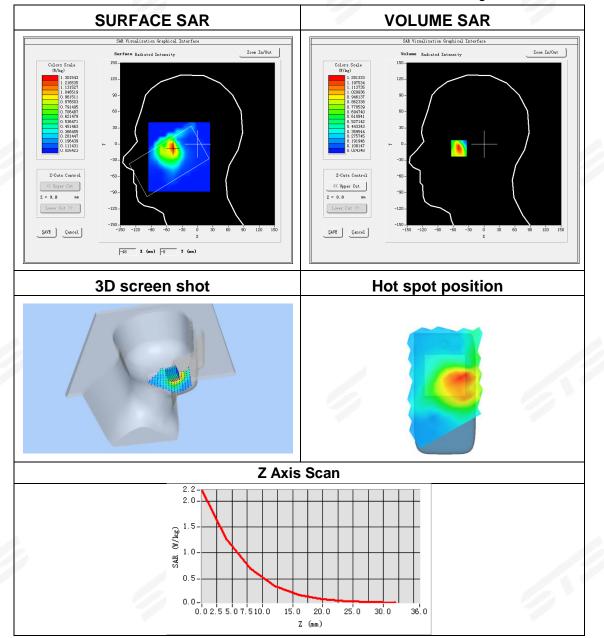


Maximum location: X=3.00, Y=1.00

SAR 10g (W/Kg)	2.606394
SAR 1g (W/Kg)	6.915718

Page 40 of 44

Z Axis Scan

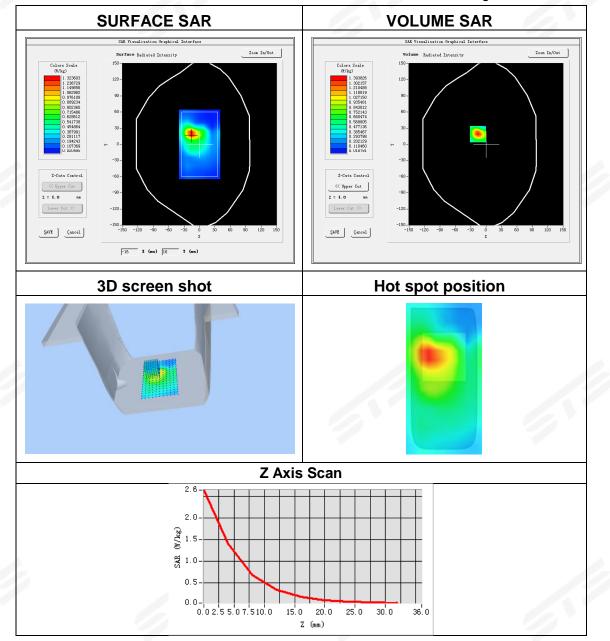


Appendix B. SAR Test Plots

Plot 1: DUT: Smart Phone; EUT Model: WP30 Pro

Test Date	2023-08-29		
Area Scan	dx=8mm dy=8mm, h= 5.00 mm		
Zoom Scan	5x5x7,dx=5mm dy=5mm dz=4mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm		
Phantom	Head		
Device Position	Left Cheek		
Band	SA N78		
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)		
Frequency	3600		
SAR 10g (W/Kg)	0.521071		
SAR 1g (W/Kg)	1.153392		

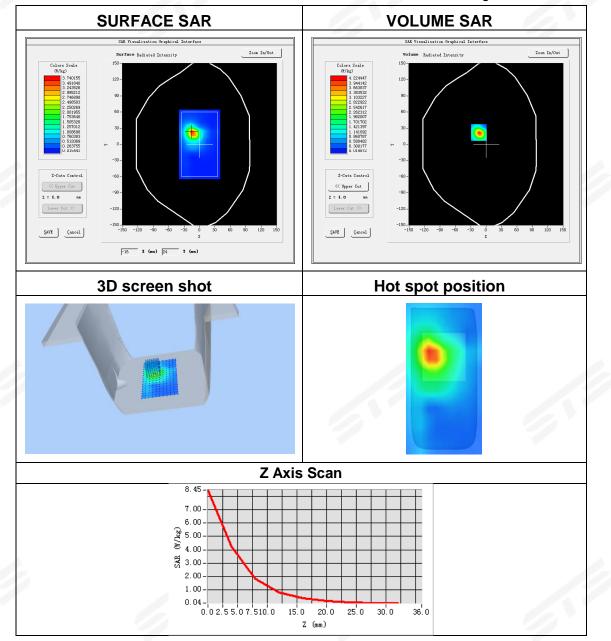
Maximum location: X=-49.00, Y=-6.00 SAR Peak: 2.29 W/kg



Plot 2: DUT: Smart Phone; EUT Model: WP30 Pro

Test Date	2023-08-29
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=5mm dy=5mm dz=4mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Body
Device Position	Front Side
Band	SA N78
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)
Frequency	3600
SAR 10g (W/Kg)	0.538204
SAR 1g (W/Kg)	1.272945
	· · · · · · · · · · · · · · · · · · ·

Maximum location: X=-16.00, Y=19.00 SAR Peak: 2.61 W/kg



Plot 3: DUT: Smart Phone; EUT Model: WP30 Pro

Test Date	2023-08-29		
Area Scan	dx=8mm dy=8mm, h= 5.00 mm		
Zoom Scan	5x5x7,dx=5mm dy=5mm dz=4mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm		
Phantom	Limbs		
Device Position	Front Side		
Band	SA N78		
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)		
Frequency	3600		
SAR 10g (W/Kg)	1.345058		
SAR 1g (W/Kg)	3.715724		

Maximum location: X=-14.00, Y=22.00 SAR Peak: 8.37 W/kg

Page 44 of 44

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

****** END OF THE REPORT****