

Product Name: PD CHARGER	Report No.: ITEZA2-202400033E
Product Model: Please refer to the Series model list of product at page 7	Security Classification: Open
Version: A0	Total Page: 28

TIRT Testing Report

Prepared By:	Checked By:	Approved By:	chnology See
Aaron Long	Stone Tang	Joky Wang	Leo TRT
Sover long	Stone Tang	from Wang	HL shenzhen to

71

FCC EMC TEST REPORT

Applicant:	Shenzhen Theone Electronic Co.,Ltd	
	THEONE Science and Technology Park 101, FengWei	
Address:	Street No.2, Dakang Community, Yuanshan Street,	
Address.	Longgang District, Shenzhen City, Guangdong	
	Province, China.	
Manufacturer:	Shenzhen Theone Electronic Co.,Ltd	
	THEONE Science and Technology Park 101, FengWei	
Address:	Street No.2, Dakang Community, Yuanshan Street,	
Address.	Longgang District, Shenzhen City, Guangdong	
	Province, China.	
Sample No:	1000028597	
Product Name:	PD CHARGER	
Brand Name:	N/A	
Model No.:	Please refer to the Series model list of product at page 7	
Test No.:	TP120C	

Date of Receipt:	2024/02/29
Date of Test:	2024/03/01~2024/03/05
Issued Date:	2024/03/11
Testing Lab:	TIRT

Note: This report shall not be reproduced except in full, without the written approval of Beijing TIRT Technology Service Co.,Ltd Shenzhen.Laboratory.
This document may be altered or revised by Beijing TIRT Technology Service Co.,Ltd Shenzhen. Laboratory.Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.

TABLE OF CONTENTS

	<u>Descri</u>	ption	Page
1.	Gene	ral Information	5
	1.1.	Description of Device (EUT)	5
	1.2.	Accessories of Device (EUT)	6
	1.3.	Tested Supporting System Details.	6
	1.4.	Block Diagram of connection between EUT and simulators	6
	1.5.	Series model list of product	7
2.	Sumr	nary Of Standards And Results	8
	2.1.	Description of Standards and Results	8
	2.2.	Test Mode Description	8
	2.3.	Test Equipment List	9
	2.4.	Test Facility	10
	2.5.	Measurement Uncertainty	10
3.	Powe	er Line Conducted Emission Test	11
	3.1.	Test Limits	11
	3.2.	Block Diagram of Test Setup	11
	3.3.	Configuration of EUT on Test	11
	3.4.	Operating Condition of EUT	11
	3.5.	Test Procedure	12
	3.6.	Test Results	12
4.	Radia	ated Emission Test	15
	4.1.	Test Limit	15
	4.2.	Block Diagram of Test Setup	16
	4.3.	Configuration of EUT on Test	17
	4.4.	Operating Condition of EUT	17
	4.5.	Test Procedure	17
	4.6.	Test Results	18
5.	Test	Setup Photo	
	5.1.	Photo of Radiated Emission Test (In Semi Anechoic Chamber)	22
	5.2.	Photo of Power Line Conducted Emission Test	22
6.	Photo	os Of The EUT	23

History of the test report

Original Report Issue Date: 2024.03.11

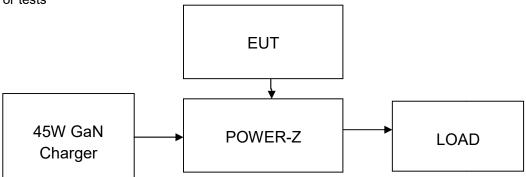
- No additional attachment
- Additional attachments were issued following record

Attachment No.	Issue Date	Description

1. General Information

1.1. Description of Device (EUT)					
Product Name	:	PD CHARGER			
Model Number	:	Please refer to the Series model list of product at page 7			
Brand Name	:	N/A			
Diff	:	There is no difference except the name of the model. All tests are made with the TP120C model			
Input	:	AC 110-240V, 50/60Hz, 2.2A Max			
Output	:	Type C output: DC 5.0V=3.0A 15.0W, 9.0V-3.0A 27.0W, 12.0=3.0A 36.0W, 15V=3.0A 45.0W, 20.0V=5.0A 100.0W PPS: 3.3-20.0V=6.0A Power: 120.0W Max			
Test Voltage	:				
Highest Frequency	-	Less than 108MHz			
riignestriequency	•				
Software version	:	N/A			
Hardware version	:	N/A			

1.2. Accessories of Device (EUT)


Accessories	: /
Manufacturer	: /
Model	: /
Ratings	: /

1.3. Tested Supporting System Details.

No.	Description	Manufacturer	Model	Serial Number	Certification or DOC
1	45W GaN Charger	N/A	P445	N/A	N/A
2	POWER-Z	N/A	KM002C 0-50V 0-6A	N/A	N/A
3	Type C Cable	N/A	N/A	N/A	N/A

1.4. Block Diagram of connection between EUT and simulators

For tests

Signal Cable Description of the above Support Units

No) .	Port Name	Cable	Length	Shielded (Yes or No)	Detachable (Yes or No)
/		/	/	1	/	/

Series model list of product					
TP120C	TP120C-EU	TP120C-US	TP120C-UK	TP120CC	TP120CA
TP120CCA	TP121C	TP121C-EU	TP121C-US	TP121C-UK	TP121CC
TP121CA	TP121CCA	TP100C	TP100C-EU	TP100C-US	TP100C-UK
TP100CC	TP100CA	TP100CCA	TP140C	TP140C-EU	TP140C-US
TP140C-UK	TP140CC	TP140CA	TP140CCA	GP120C	GP120C-EU
GP120C-US	GP120C-UK	GP120CC	GP120CA	GP120CCA	GP100C
GP100C-EU	GP100C-US	GP100C-UK	GP100CC	GP100CCA	GP140C
GP140C-EU	GP140C-US	GP140C-UK	GP140CC	GP140CCA	DGCDQ-BC037-00
DGCDQ-BC037-01	1	1	1	1	/

1.5. Series model list of product

2. Summary Of Standards And Results

2.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION					
Dese	cription of Test Item	Standard	Limits	Results	
Po	wer Line Conducted	FCC Part 15	Class B	Р	
	Emission Test	ANSI C63.4:2014	Class D	P	
Dedicted Enviroism Test		FCC Part 15	Class B	D	
Rau	diated Emission Test	ANSI C63.4:2014	Class D	Р	
Note:	1. P is an abbreviation	for Pass.			
	2. F is an abbreviation for Fail.				
3. N/A is an abbreviation for Not Applicable.					
4. The conclusion of this test report is judged by actual test data without considering measurement					
uncertainty.					

2.2. Test Mode Description

Mode No.	Test Mode	Test Voltage					
Mode 1	Type C output: DC 5.0V-3.0A 15.0W	AC 120V/60Hz					
Mode 2	Type C output: DC 9.0V-3.0A 27.0W	AC 120V/60Hz					
Mode 3	e 3 Type C output: DC 12.0V=3.0A 36.0W AC 120V/60Hz						
Mode 4	e 4 Type C output: DC 15.0V=3.0A 45.0W AC 120V/60Hz						
Mode 5	Type C output: DC 20.0V-3.0A 100.0W	AC 120V/60Hz					
Mode 6	PPS: DC 3.3V∞6.0A	AC 120V/60Hz					
Mode 7	PPS: DC 20.0V=6.0A	AC 120V/60Hz					
Note: 1, Mod	e 7 is worst case mode tests for Power Line Conducted Er	mission Test.					
2, Mode	e 7 is worst case mode tests for Radiated Emission Test.						
3, This	report only reflected the worst mode in this part.						

2.3. Test Equipment List

Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibratio n	Due Calibratio n						
	Radiated Emission										
EMI Receiver	Rohde&Schwarz	ESIB 40	YH-TIRT-SAC-9 66-20220911	2024/01/05	2025/01/04						
Integral Antenna	Schwarzbeck	VULB 9168	01314	2023/12/11	2024/12/10						
Integral Antenna	Rohde&Schwarz	HF907	RSM2991424	2023/12/11	2024/12/10						
Preamplifier	Emtrace	RP01A	'02017	2024/01/05	2025/01/04						
Preamplifier	Schwarzbeck	BBV9744	00143	2024/01/05	2025/01/04						
RF Cable	1	LMR400UF-NMNM -7.0M	1	2024/01/05	2025/01/04						
RF Cable	1	SFT2050PUR-NMN M-7.0M	1	2024/01/05	2025/01/04						
		Conducted Emission	on								
EMI Receiver	Rohde&Schwarz	ESR7	1316.3003K07-1 02611-mk	2023/12/24	2024/10/23						
LISN	Rohde&Schwarz	ENV216	3560.655.12-102 915-Bp	2023/12/24	2024/10/23						
ISN	Schwarzbeck	ENY81	1309.8510.03	2023/03/08	2024/03/07						
ISN	Schwarzbeck	ENY81-CAT6	1309.8526.03-10 1976-kh	2023/03/08	2024/03/07						
RF Cable	١	SFT2050PUR-NMN M-2.0M	١	2024/01/05	2025/01/04						

2.4. Test Facility

Company:	Beijing TIRT Technology Service Co.,Ltd Shenzhen
	104 Building C, Xinmingsheng Industrial Park No.132, Zhangge Old
Address:	Village East Zone, Zhangge Community, Fucheng Street, Longhua
	District, Shenzhen, Guangdong, P. R. China
CNAS Registration Number:	CNAS L14158
A2LA Registration Number:	6049.01
FCC Designation Number:	CN1366
Test Firm Registration Number:	820690
Telephone:	+86-0755-27087573

2.5. Measurement Uncertainty

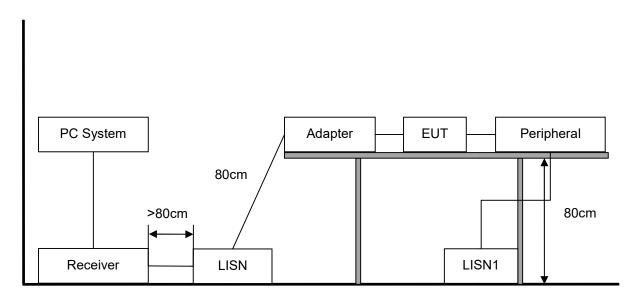
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement uncert	Measurement uncertainty levels of TIRT Lab					
Measurement	Measurement Frequency Range	U(dB)				
Radiated Emission	$30 MHz{\sim}1 GHz$	4.6				
Radiated Emission	1GHz ~ 18GHz	4.9				
Radiated Emission	18GHz ~ 40GHz	4.9				
Conduction Emissions	150kHz~30MHz	3.1				

3. Power Line Conducted Emission Test

3.1. Test Limits


			Maximum RF Line Voltage				
Frequency			Quasi-Peak Level	Average Level			
			dB(μV)	dB(μV)			
150kHz	~	500kHz	66 ~ 56*	56 ~ 46*			
500kHz	~	5MHz	56	46			
5MHz	~	30MHz	60	50			

Notes: 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss

2. Decreasing linearly with logarithm of frequency.

3. The lower limit shall apply at the transition frequencies.

3.2. Block Diagram of Test Setup

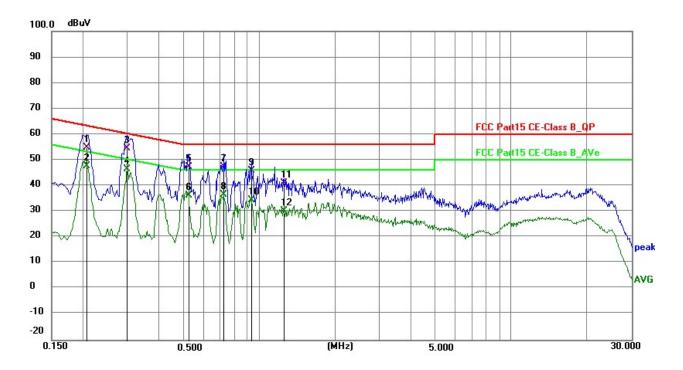
3.3. Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

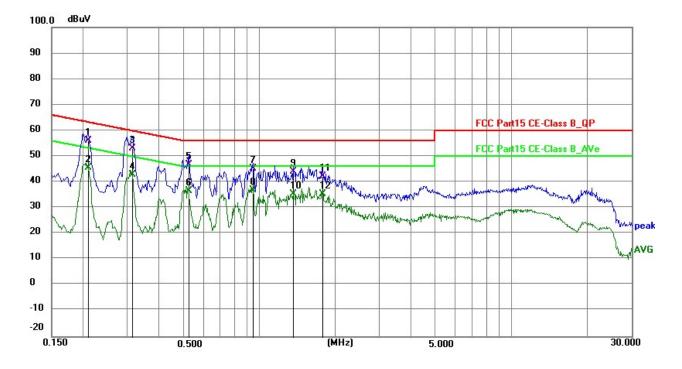
- (1) Setup the EUT as shown as Section 3.2.
- (2) Turn on the power of all equipment.
- $(3) \qquad \text{Let the EUT work in test mode and 15 minutes before taking the test.}$

3.5. Test Procedure


- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on conducted Emission test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9kHz.

3.6. Test Results

EUT	PD CHARGER	Test Date	2024.03.04					
M/N	TP120C	Temperature	24 °C					
Test Engineer	Aaron Long	Humidity	55%					
Test Voltage	AC 120V/60Hz	Pressure	101.6kPa					
Test Mode	Mode 7							
Test Results	Test Results PASS							
Note: 1. The test	results are listed in next pages.							
2. If the lin	nits for the measurement with the average dete	ctor are met when usi	ing a receiver with a					
peak dete	ctor, the test unit shall be deemed to meet both	limits and the measu	rement with the					
average d	etector and quasi-peak detector need not be ca	arried out.						
3. If the lin	nits for the measurement with the average dete	ctor are met when usi	ing a receiver with a					
quasi-peal	detector, the test unit shall be deemed to mee	et both limits and the	measurement with					
the average	e detector need not be carried out.							



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2071	45.29	9.63	54.92	63.32	-8.40	QP	Р	
2	0.2071	38.06	9.63	47.69	53.32	-5.63	AVG	Р	
3	0.2983	44.88	9.63	54.51	60.29	-5.78	QP	P	
4 *	0.2983	36.83	9.63	46.46	50.29	-3.83	AVG	P	2. *
5	0.5231	37.69	9.62	47.31	56.00	-8.69	QP	P	
6	0.5231	26.57	9.62	36.19	46.00	-9.81	AVG	P	L
7	0.7260	37.81	9.63	47.44	56.00	-8.56	QP	P	
8	0.7260	26.82	9.63	36.45	46.00	-9.55	AVG	P	
9	0.9330	36.12	9.64	45.76	56.00	-10.24	QP	Р	ġ.
10	0.9330	24.74	9.64	34.38	46.00	-11.62	AVG	P	
11	1.2570	31.30	9.64	40.94	56.00	-15.06	QP	P	β
12	1.2570	20.65	9.64	30.29	46.00	-15.71	AVG	P	

Polarization: Neutral

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2084	46.31	9.63	55.94	63.27	-7.33	QP	Р	
2	0.2084	35.80	9.63	45.43	53.27	-7.84	AVG	P	
3 *	0.3120	43.30	9.62	52.92	59.92	-7.00	QP	P	
4	0.3120	33.08	9.62	42.70	49.92	-7.22	AVG	P	-
5	0.5231	37.19	9.62	46.81	56.00	-9.19	QP	P	
6	0.5231	27.07	9.62	36.69	46.00	-9.31	AVG	P	
7	0.9465	35.58	9.64	45.22	56.00	-10.78	QP	P	
8	0.9465	27.26	9.64	36.90	46.00	-9.10	AVG	P	
9	1.3650	34.55	9.64	44.19	56.00	-11.81	QP	Р	
10	1.3650	25.81	9.64	35.45	46.00	-10.55	AVG	P	
11	1.7835	32.46	9.65	42.11	56.00	-13.89	QP	P	
12	1.7835	25.76	9.65	35.41	46.00	-10.59	AVG	P	

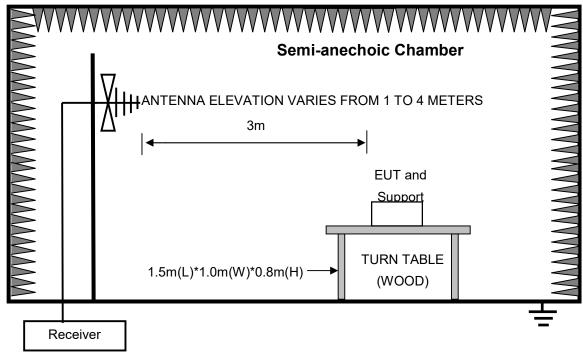
4. Radiated Emission Test

4.1.Test Limit

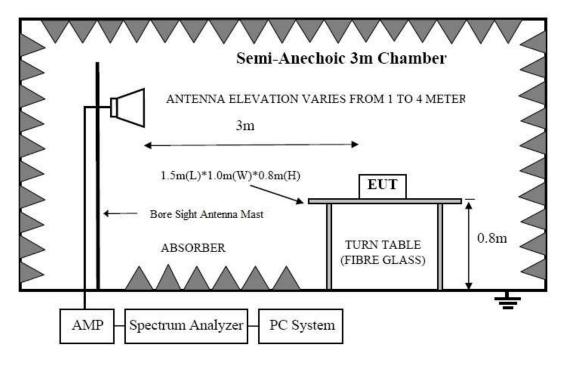
Frequency			Distance	Field Strengths Limits			
	MHz		(Meters)	dB(µV)/m			
30) ~ 88		3	40.0			
88	~	216	3	43.5			
216	~	960	3	46.0			
960	~	1000	3	54.0			
A	Above 1GHz		3	74(Peak) 54(Average)			

Notes: 1. The smaller limit shall apply at the cross point between two frequency bands.

2. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.


3. Frequency range of radiated measurements:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.



4.2. Block Diagram of Test Setup

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

4.3. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

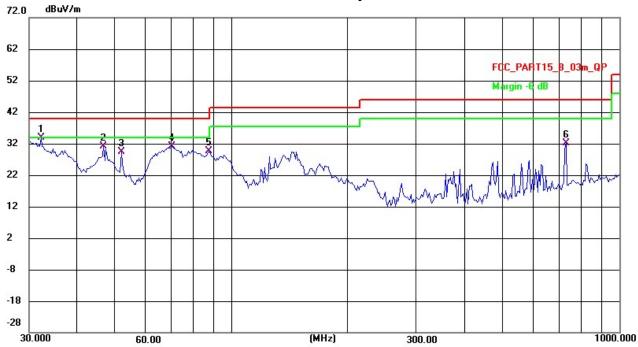
4.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

4.5. Test Procedure

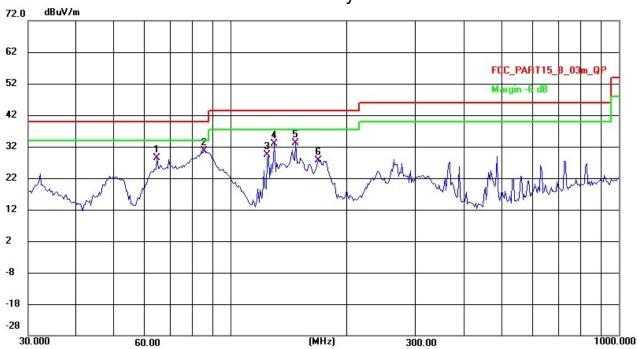
- (1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.


- (3) The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESR) is set at 120kHz.
- (4) The frequency range from above 1GHz is checked, the bandwidth of spectrum analyzer (Spectrum Analyzer FSV40-N) is set at 1MHz.
- (5) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, the frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (6) The test results are reported on Section 4.7.

4.6. Test Results

For below 1GHz radiated	d disturbance test result:					
EUT	PD CHARGER	Test Date	2024.03.04			
M/N	TP120C	Temperature	23.5℃			
Test Engineer	Aaron Long	Humidity	46%			
Test Voltage	AC 120/60Hz	Pressure	101.6kPa			
Test Mode	Mode 7					
Test Results	PASS					
Note: 1. The test resu	lts are listed in next pages.					
2. If the limits fo	or the measurement with the quasi-peak detector are met when using a receiver					
with a peak dete	ector, the test unit shall be deemed to meet limits and the measurement with the					
quasi-peak dete	ector need not be carried out.					



Frequency Reading Factor Level Limit Margin Height Azimuth P/F Remark Detector No. (dBuV) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) (MHz) (dB/m) 32.1840 53.91 -20.07 33.84 40.00 -6.16 1 * QP 100 272 Ρ 46.7077 50.53 -8.97 2 -19.50 31.03 40.00 QP 100 354 P 51.8997 -19.69 29.41 40.00 100 Ρ 3 49.10 -10.59 QP 354 70.2095 53.24 40.00 Ρ 4 -22.12 31.12 -8.88 QP 100 120 87.2980 40.00 QP P 5 53.96 -24.35 29.61 -10.39 100 272 Ρ 6 728.8971 43.66 -11.65 32.01 46.00 -13.99 QP 100 251

Antenna Polarity: Vertical

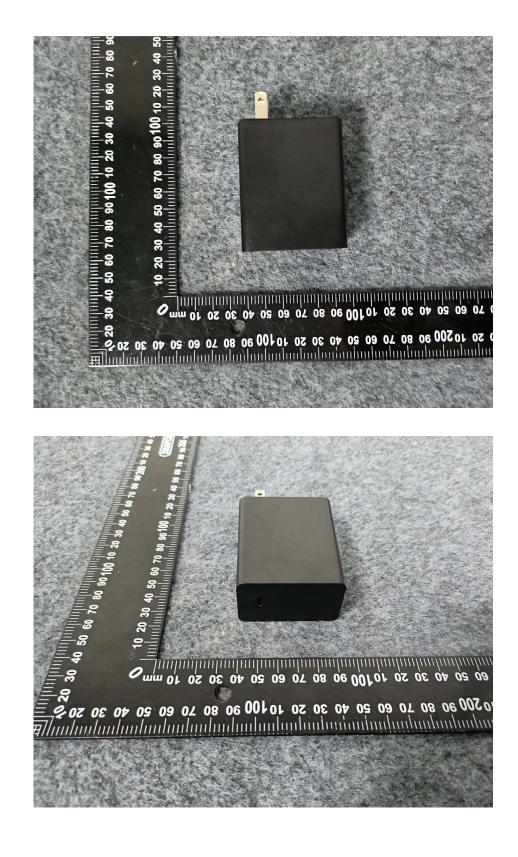
Antenna Polarity: Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	64.5319	49.49	-21.10	28.39	40.00	-11.61	QP	100	348	P	
2 *	85.4769	54.84	-24.32	30.52	40.00	-9.48	QP	200	35	P	
3	124.9249	51.20	-21.86	29.34	43.50	-14.16	QP	100	5	P	
4	129.3923	54.44	-21.62	32.82	43.50	-10.68	QP	200	42	P	-
5	146.8392	53.92	-20.83	33.09	43.50	-10.41	QP	200	5	P	
6	167.8136	48.83	-21.08	27.75	43.50	-15.75	QP	100	156	P	

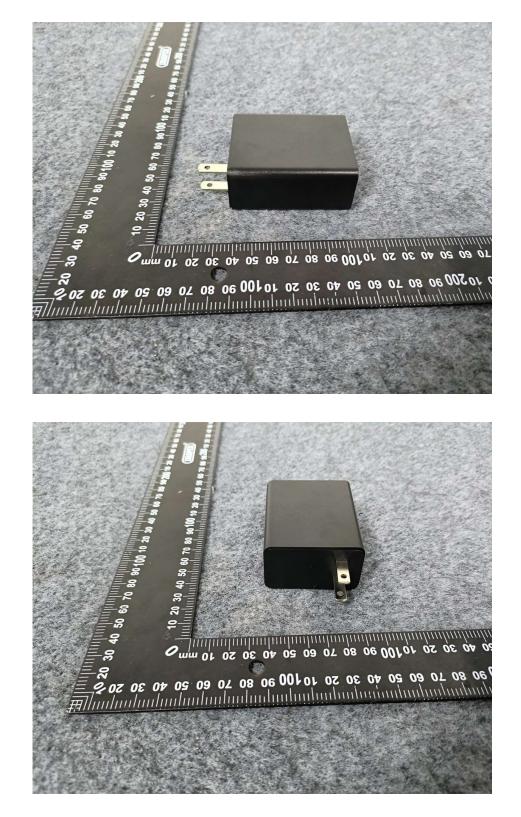
For above 1GHz radiated disturbance test result:			
EUT	PD CHARGER	Test Date	N/A
M/N	TP120C	Temperature	N/A
Test Engineer	N/A	Humidity	N/A
Test Voltage	N/A	Pressure	N/A
Test Mode	N/A		
Test Results	N/A		

Note: The highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. So the above 1GHz radiated disturbance test not applicable

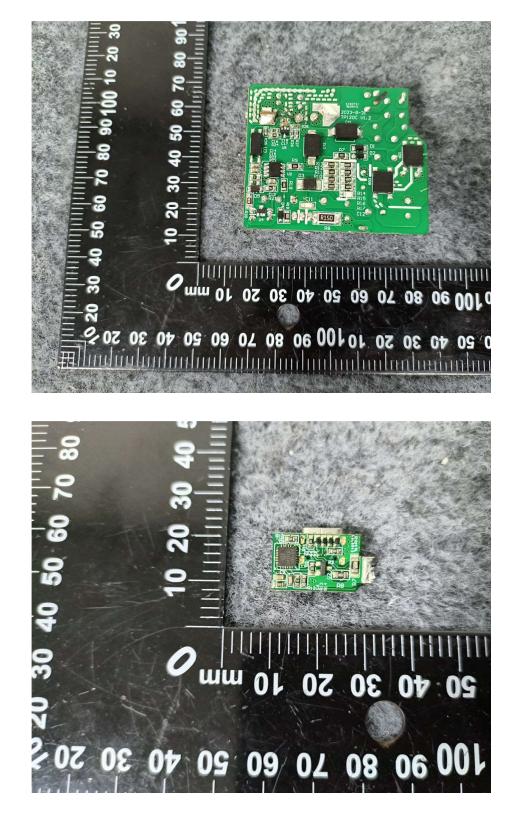
5. Test Setup Photo

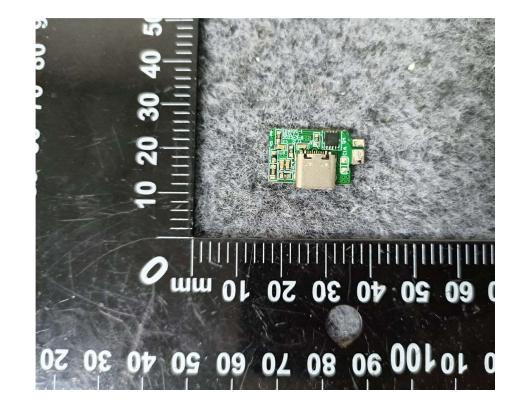

5.1. Photo of Radiated Emission Test (In Semi Anechoic Chamber)

5.2. Photo of Power Line Conducted Emission Test



6. Photos Of The EUT





----END OF REPORT----