

| Product Name: Smart Phone | Report No.: FCC2022-06453E    |
|---------------------------|-------------------------------|
| Product Model: V Max      | Security Classification: Open |
| Version: 1.0              | Total Page: 33                |

# **TIRT Testing Report**

| Prepared By: | Checked By: | Approved By: |
|--------------|-------------|--------------|
| Stone Tang   | Randy Lv    | Daniel Chen  |
| Stone Tang   | Randy LV    | Daniel Chen  |



# FCC EMC TEST REPORT

| Product No:      | 20221220021903                                                                                                                                                             |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Name:    | Smart Phone                                                                                                                                                                |
| Product Model:   | V Max, S100Pro<br>All models are with same schematic, The only diffrences are<br>model no. V Max is main test model, S100Pro is the adding<br>model. No other differences. |
| Date of Receipt: | Dec.12.2022                                                                                                                                                                |
| Date of Test:    | Dec.13.2022~ Jan.8.2023                                                                                                                                                    |
| Issued Date:     | Jan.9.2023                                                                                                                                                                 |
| Testing Lab:     | TIRT                                                                                                                                                                       |
| Address:         | /                                                                                                                                                                          |

**Note:** This report shall not be reproduced except in full, without the written approval of Beijing Tairuite Inspection&Testing Technology Service Co.,Ltd Shenzhen Branch. Laboratory. This document may be altered or revised by Beijing Tairuite Inspection&Testing Technology Service Co.,Ltd Shenzhen Branch. Laboratory. Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.



# **Table of Contents**

| 1.   | Certification                                           | 5  |
|------|---------------------------------------------------------|----|
| 2.   | Test Result Summary                                     | 6  |
| 2.1. | Test Procedures According to The Technical Standard(s): | 6  |
| 2.2. | Measurement Uncertainty                                 | 6  |
| 2.3. | Test Instruments List                                   | 7  |
| 3.   | General Information                                     | 9  |
| 3.1. | Basic Information of EUT                                | 9  |
| 3.2. | Description of Test Modes                               |    |
| 3.3. | Configure of system under test                          |    |
| 3.4. | Description of support units                            | 11 |
| 4.   | Emission Test                                           |    |
| 4.1. | Conduction Emission Test                                |    |
| 4.2. | Radiated Emission Test                                  | 16 |
| 5.   | Appendix-A Test Photographs                             | 23 |
| 6.   | Appendix-B Photographs of EUT                           | 25 |



# History of the test report

Original Report Issue Date: 2023-01-9

• No additional attachment

#### • Additional attachments were issued following record

| Attachment No. | Issue Date | Description |
|----------------|------------|-------------|
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |



# 1. Certification

| Product Name  | Smart Phone                                                                                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Model | V Max                                                                                                                                                             |
| Brand Name    | DOOGEE                                                                                                                                                            |
| Power supply  | Model: HJ-1203000-09<br>Input: 100-240V~50/60Hz, 0.8A<br>Output: 5V=3A , 9V=3A, 12V=2.75A, 33.0W Max.<br>PPS:5.0V-11.0V 3.0A 33.0W Max.                           |
| Applicant     | Shenzhen DOOGEE Hengtong Technology CO.,LTD<br>B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.22,<br>Longhua New District, Shenzhen, China |
| Manufacturer  | Shenzhen DOOGEE Hengtong Technology CO.,LTD<br>B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.22,<br>Longhua New District, Shenzhen, China |

|                               | Applicable standard |
|-------------------------------|---------------------|
| FCC 47 Part 15 Subpart B:2020 |                     |
| ANSI C63.4:2014               |                     |

The above equipment has been tested by Beijing Tairuite Inspection&Testing Technology Service Co.,Ltd Shenzhen Branch. Laboratory The results of testing in this report apply only to the product system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.



# 2. Test Result Summary

### **2.1. Test Procedures According to The Technical Standard(s):**

| Emission                           |                       |      |         |      |  |  |
|------------------------------------|-----------------------|------|---------|------|--|--|
| Standard Item Result Remarks Teste |                       |      |         |      |  |  |
| ECC 47 Part 15 Subpart R           | Conducted (Main Port) | PASS | Class B | TIRT |  |  |
|                                    | Radiated              | PASS | Class B | TIRT |  |  |

#### Note:

(1) "N/A" denotes test is not applicable in this test report.

(2) TIRT: Lab. Beijing Tairuite Inspection&Testing Technology Service Co.,Ltd Shenzhen Branch.

### 2.2. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| Measurement uncertainty levels of TIRT Lab |                     |     |  |  |
|--------------------------------------------|---------------------|-----|--|--|
| Measurement Measurement Frequency U(dB)    |                     |     |  |  |
| Radiated Emission                          | $30 MHz{\sim}1 GHz$ | 4.6 |  |  |
| Conduction Emissions                       | 150kHz~30MHz        | 3.1 |  |  |



# 2.3. Test Instruments List

| Conducted emissions on AC mains |                   |             |              |            |                 |  |
|---------------------------------|-------------------|-------------|--------------|------------|-----------------|--|
| Equipment                       | Manufacturer      | Model No    | Inventory No | Cal Date   | Cal Due<br>Date |  |
| Pulse Limiter                   | SCHWARZBE<br>CK   | VTSD 9561-F | 00953        | 2022-11-24 | 2023-11-23      |  |
| Coaxial Switcher                | SCHWARZBE<br>CK   | CX210       | CX210        | 2022-11-24 | 2023-11-23      |  |
| V-LISN                          | SCHWARZBE<br>CK   | NSLK 8127   | 01073        | 2022-11-24 | 2023-11-23      |  |
| LISN                            | AFJ               | LS16/110VAC | 16010020076  | 2022-11-24 | 2023-11-23      |  |
| EMI Receiver                    | ROHDE&SCH<br>WARZ | ESCI3       | 101422       | 2022-11-24 | 2023-11-23      |  |

| Radiated emissions (Below 1GHz) |                   |                     |              |            |                 |  |
|---------------------------------|-------------------|---------------------|--------------|------------|-----------------|--|
| Equipment                       | Manufacturer      | Model No            | Inventory No | Cal Date   | Cal Due<br>Date |  |
| Coaxial cable<br>Multiflex 141  | Schwarzbeck       | N/SMA 0.5m          | 517386       | 2022-03-26 | 2023-03-25      |  |
| Preamplifier                    | SCHWARZBE<br>CK   | BBV9744             | 00246        | 2022-11-24 | 2023-11-23      |  |
| RE Cable                        | REBES Talent      | UF1-SMASMA<br>M-10m | 21101566     | 2022-11-24 | 2023-11-23      |  |
| RE Cable                        | REBES Talent      | UF2-NMNM-10<br>m    | 21101570     | 2022-11-24 | 2023-11-23      |  |
| RE Cable                        | REBES Talent      | UF1-SMASMA<br>M-1m  | 21101568     | 2022-11-24 | 2023-11-23      |  |
| RE Cable                        | REBES Talent      | UF2-NMNM-1m         | 21101576     | 2022-11-24 | 2023-11-23      |  |
| RE Cable                        | REBES Talent      | UF2-NMNM-2.5<br>m   | 21101573     | 2022-11-24 | 2023-11-23      |  |
| POSITIONAL<br>CONTROLLER        | SKET              | PCI-GPIB            | /            | /          | /               |  |
| Horn Antenna                    | SCHWARZBE<br>CK   | BBHA9170            | 01157        | 2021-11-28 | 2023-11-27      |  |
| EMI TEST<br>RECEIVER            | ROHDE&SCH<br>WARZ | ESCI7               | 101032       | 2022-11-24 | 2023-11-23      |  |
| SIGNAL                          | ROHDE&SCH         | FSQ40               | 100010       | 2022-11-24 | 2023-11-23      |  |



Report No.: FCC2022-06453E

| ANALYZER       | WARZ      |              |       |            |            |
|----------------|-----------|--------------|-------|------------|------------|
| POSITIONAL     | SVET      |              | /     | /          | /          |
| CONTROLLER     | SKEI      | PCI-OPIB     | /     | /          | /          |
| Broadband      | SCHWARZBE | DDV0719D     | 00000 | 2022 02 26 | 2022 02 25 |
| Preamplilifier | СК        | DD V 9 / 16D | 00008 | 2022-03-20 | 2025-05-25 |
| Llom Antonno   | SCHWARZBE |              | 2507  | 2022 05 22 | 2024 05 21 |
| Horn Antenna   | CK        | ВБПА9120D    | 2397  | 2022-03-22 | 2024-03-21 |
| EZ_EMC         | Frad      | FA-03A2 RE+  | /     | /          | /          |
| POSITIONAL     | SVET      |              | /     | /          | 1          |
| CONTROLLER     | SKEI      | PCI-GPIB     | /     | /          | /          |
| Log periodic   | SCHWARZBE |              | 01229 | 2021 11 20 | 2022 11 27 |
| antenna        | СК        | VULB 9108    | 01528 | 2021-11-28 | 2023-11-27 |



# 3. General Information

### 3.1. Basic Information of EUT

| Product Name  | Smart Phone                                                                                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Model | V Max                                                                                                                                                             |
| Brand Name    | DOOGEE                                                                                                                                                            |
| Power supply  | Model: HJ-1203000-09<br>Input: 100-240V~50/60Hz, 0.8A<br>Output: 5V=3A , 9V=3A, 12V=2.75A, 33.0W Max.<br>PPS:5.0V-11.0V 3.0A 33.0W Max.                           |
| Applicant     | Shenzhen DOOGEE Hengtong Technology CO.,LTD<br>B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.22,<br>Longhua New District, Shenzhen, China |
| Manufacturer  | Shenzhen DOOGEE Hengtong Technology CO.,LTD<br>B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.22,<br>Longhua New District, Shenzhen, China |

#### Note:

1. For more detailed features description, please refer to the manufacturer's or the User's manual of the EUT.

2. The EUT's highest operating frequency is >108MHz.



### **3.2. Description of Test Modes**

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively. The test data reflect the worst model.

| Test Mode                   |                            |  |  |  |  |  |  |  |
|-----------------------------|----------------------------|--|--|--|--|--|--|--|
| Final Test Mode Description |                            |  |  |  |  |  |  |  |
| 1                           | Charging + Video play      |  |  |  |  |  |  |  |
| 2                           | Charging + Video recording |  |  |  |  |  |  |  |
| 3                           | Date transmission          |  |  |  |  |  |  |  |



## 3.3. Configure of system under test





## 3.4. Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test

configuration during the tests.

| No. | Equipment | Model       | Brand | FCC ID | Series No |  |
|-----|-----------|-------------|-------|--------|-----------|--|
| 1   | Mainframe | Vostro 5890 | DELL  | /      | /         |  |



# 4. Emission Test

### **4.1. Conduction Emission Test**

### 4.1.1.Limits

| FREQUENCY (MHz) | Class /    | A (dBuV) | Class B (dBuV) |         |  |  |
|-----------------|------------|----------|----------------|---------|--|--|
|                 | Quasi-peak | Average  | Quasi-peak     | Average |  |  |
| 0.15 - 0.5      | 79         | 66       | 66 - 56        | 56 - 46 |  |  |
| 0.50 - 5.0      | 73         | 60       | 56             | 46      |  |  |
| 5.0 - 30.0      | 73         | 60       | 60             | 50      |  |  |

#### Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

### 4.1.2.Test Procedures

- 1. Test limits and test methods reference FCC Part 15.107 Subpart B.
- 2. The EUT was placed 0.8 m from the horizontal ground plane and 0.4 m from the vertical groundplane with EUT being connected to the power mains through a line impedance stabilizationnetwork (AMN). All other support equipment powered from additional AMN. The AMN provide50 Ohm/ 50 uH of coupling impedance for the measuring instrument.
- 3. Interconnecting cables that hang closer than 0.4 m to the ground plane shall be folded back andforth in the center forming a bundle 0.3 m to 0.4 m long.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Actual test configuration, please refer to the related Item EUT Test Photos.
- 6. The thickness of the insulation shall not be more than 150 mm.



### 4.1.3.Test Set-up



For the actual test configuration, please refer to the related item – Photographs of the test configuration



### 4.1.4.Test Results

| Product              | Model:             | V Max             |                |                 | RB              | RBW            |                                          |         | 9 kHz                                  |  |  |  |  |  |
|----------------------|--------------------|-------------------|----------------|-----------------|-----------------|----------------|------------------------------------------|---------|----------------------------------------|--|--|--|--|--|
| Environr<br>Conditio | nental<br>ns       | 25° C             | ,49% F         | RH              | Те              | Test Mode      |                                          |         | Mode 1                                 |  |  |  |  |  |
| Tested b             | у                  | Tang <sup>-</sup> | Гао            |                 | Те              | st Res         | sults                                    |         | PASS                                   |  |  |  |  |  |
| Test Dat             | e                  | 2022-1            | 2-21           |                 |                 |                |                                          |         |                                        |  |  |  |  |  |
| Note:                |                    |                   |                |                 |                 |                |                                          |         |                                        |  |  |  |  |  |
|                      |                    |                   |                |                 |                 |                |                                          |         |                                        |  |  |  |  |  |
|                      | Line               |                   |                |                 |                 |                |                                          |         |                                        |  |  |  |  |  |
|                      |                    |                   |                |                 |                 |                |                                          |         |                                        |  |  |  |  |  |
| 80.                  |                    |                   |                |                 |                 |                |                                          |         |                                        |  |  |  |  |  |
| 70                   |                    |                   |                |                 |                 |                |                                          | ++      |                                        |  |  |  |  |  |
| 60                   |                    |                   |                |                 |                 |                |                                          | ++      | EN\$5032 CE-Class B_QP                 |  |  |  |  |  |
| 50                   |                    |                   |                |                 |                 |                |                                          |         | EN55032 CE-Class 8_AVe                 |  |  |  |  |  |
| 40                   | _                  |                   |                |                 |                 |                |                                          |         |                                        |  |  |  |  |  |
| 30                   | L.                 | many              | hulin          |                 |                 | (M)            | ₩₩                                       | 17th    | WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW |  |  |  |  |  |
| 10                   | - <b>*</b>         | mnd               | kh.r           | huli            | tuř.            | unu            | a na | iphowda | AVG                                    |  |  |  |  |  |
| -10                  | ·                  |                   |                |                 |                 |                |                                          | ++      |                                        |  |  |  |  |  |
| -20                  | 0.150              | 0                 | 500            |                 | (MHz)           |                | 5.000                                    |         | 30.000                                 |  |  |  |  |  |
|                      | 0.100              | u.                | 566            |                 | (Mile)          |                | 5.000                                    |         |                                        |  |  |  |  |  |
| No.                  | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector                                 | P/F     | Remark                                 |  |  |  |  |  |
| 1                    | 0.1905             | 26.26             | 10.18          | 36.44           | 64.01           | -27.57         | QP                                       | P       |                                        |  |  |  |  |  |
| 2                    | 0.1905             | -0.93             | 10.18          | 9.25            | 56.00           | -94.76         | OP                                       | P       |                                        |  |  |  |  |  |
| 4                    | 0.5233             | -1.49             | 10.26          | 8.77            | 46.00           | -37.23         | AVG                                      | P       |                                        |  |  |  |  |  |
| 5                    | 1.3020             | 22.25             | 10.27          | 32.52           | 56.00           | -23.48         | QP                                       | Р       |                                        |  |  |  |  |  |
| 6                    | 1.3020             | 0.74              | 10.27          | 11.01           | 46.00           | -34.99         | AVG                                      | Р       |                                        |  |  |  |  |  |
| 7                    | 1.7023             | 20.15             | 10.29          | 30.44           | 56.00           | -25.56         | QP                                       | Ρ       |                                        |  |  |  |  |  |
| 8                    | 1.7023             | 1.86              | 10.29          | 12.15           | 46.00           | -33.85         | AVG                                      | Ρ       |                                        |  |  |  |  |  |
| 9 *                  | 2.3054             | 22.46             | 10.28          | 32.74           | 56.00           | -23.26         | QP                                       | P       |                                        |  |  |  |  |  |
| 10                   | 2.3054             | 1.10              | 10.28          | 11.38           | 46.00           | -34.62         | AVG                                      | P       |                                        |  |  |  |  |  |
| 11                   | 12.1200            | 24.94             | 10.20          | 35.14           | 50.00           | -24.86         | AVG                                      | P       |                                        |  |  |  |  |  |
| 12                   | 12.0010            | 1.00              | 10.10          | 11.00           | 50.00           | -00.14         | 100                                      | r I     |                                        |  |  |  |  |  |

#### Note:

1、Correct Factor = LISN Factor + Cable Loss + Pulse Limiter Factor, the value was added to Original Receiver Reading by the software automatically.

- 2、Measurement= Reading + Correct Factor.
- 3、Over = Result Limit



Report No.: FCC2022-06453E

| Product               | Model:             | V Max             | [              |                 | RB              | RBW              |                                             |         | 9 kHz                      |  |  |  |  |  |
|-----------------------|--------------------|-------------------|----------------|-----------------|-----------------|------------------|---------------------------------------------|---------|----------------------------|--|--|--|--|--|
| Environr<br>Condition | nental<br>ns       | 25° C             | ,49% F         | КН              | Te              | Test Mode        |                                             |         | Mode 1                     |  |  |  |  |  |
| Tested b              | у                  | Tang <sup>-</sup> | Тао            |                 | Те              | st Res           | ults                                        |         | PASS                       |  |  |  |  |  |
| Test Dat              | е                  | 2022-1            | 12-21          |                 |                 |                  |                                             |         |                            |  |  |  |  |  |
| Note:                 |                    |                   |                |                 |                 |                  |                                             |         |                            |  |  |  |  |  |
|                       | Neutral            |                   |                |                 |                 |                  |                                             |         |                            |  |  |  |  |  |
| 80.                   | 0 dBuV             |                   |                |                 |                 |                  |                                             |         |                            |  |  |  |  |  |
| 70                    |                    |                   |                |                 |                 |                  |                                             | ++      |                            |  |  |  |  |  |
| 60                    |                    |                   |                |                 |                 |                  |                                             |         | EN55032 CE-Class B_QP      |  |  |  |  |  |
| 50                    |                    |                   |                |                 |                 |                  |                                             |         | EN55032 CE-Class 8_AVe     |  |  |  |  |  |
| 40<br>30<br>20        |                    | hund              | hwww           | WM Ju           | M               | (rv              | Ŵ                                           | 1º<br>M | 1 the market of the second |  |  |  |  |  |
| 0                     |                    |                   |                |                 |                 | an on the second | U.S. C. |         | AVG                        |  |  |  |  |  |
| -10                   |                    |                   |                |                 |                 |                  |                                             | ╂       |                            |  |  |  |  |  |
| -20                   | 0.150              | 0.                | 500            |                 | (MHz)           |                  | 5.000                                       |         | 30.000                     |  |  |  |  |  |
| No.                   | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB)   | Detector                                    | P/F     | Remark                     |  |  |  |  |  |
| 1                     | 0.2310             | 22.92             | 10.20          | 33.12           | 62.41           | -29.29           | QP                                          | P       |                            |  |  |  |  |  |
| 2                     | 0.2310             | -1.65             | 10.20          | 8.55            | 52.41           | -43.86           | AVG                                         | P       |                            |  |  |  |  |  |
| 4                     | 0.5010             | -0.89             | 10.26          | 9.37            | 46.00           | -36.63           | AVG                                         | P       |                            |  |  |  |  |  |
| 5                     | 1.3020             | 17.27             | 10.25          | 27.52           | 56.00           | -28.48           | QP                                          | Р       |                            |  |  |  |  |  |
| 6                     | 1.3020             | -1.11             | 10.25          | 9.14            | 46.00           | -36.86           | AVG                                         | Ρ       |                            |  |  |  |  |  |
| 7                     | 2.7014             | 16.17             | 10.27          | 26.44           | 56.00           | -29.56           | QP                                          | P       |                            |  |  |  |  |  |
| 8                     | 2.7014             | -2.38             | 10.27          | 7.89            | 46.00           | -38.11           | AVG                                         | P       |                            |  |  |  |  |  |
| 9                     | 0.9180             | -0.96             | 10.27          | 9.31            | 60.00           | -40.69           | AVG                                         | P       |                            |  |  |  |  |  |
| 11                    | 12,1290            | -0.47             | 10.19          | 9.72            | 50.00           | -40.28           | AVG                                         | P       |                            |  |  |  |  |  |
| 12                    | 12.3180            | 22.57             | 10.17          | 32.74           | 60.00           | -27.26           | QP                                          | P       |                            |  |  |  |  |  |
|                       |                    |                   |                |                 |                 |                  |                                             |         |                            |  |  |  |  |  |

#### Note:

1. Correct Factor = LISN Factor + Cable Loss + Pulse Limiter Factor, the value was added to Original Receiver Reading by the software automatically.

2. Measurement= Reading + Correct Factor.

3、Over = Result – Limit



## 4.2. Radiated Emission Test

### 4.2.1.Limit

#### FCC Part15B

|                 | limits at 3m (dBµV/m) |             |             |  |  |  |  |
|-----------------|-----------------------|-------------|-------------|--|--|--|--|
| Frequency (MHZ) | QP Detector           | PK Detector | AV Detector |  |  |  |  |
| 30 – 88         | 40.0                  |             |             |  |  |  |  |
| 88 – 216        | 43.5                  |             |             |  |  |  |  |
| 216 – 960       | 46.0                  |             |             |  |  |  |  |
| 960 – 1000      | 54.0                  |             |             |  |  |  |  |
| Above 1000      |                       | 74.0        | 54.0        |  |  |  |  |

| Highest frequency generated or used in<br>the device or on which the device<br>operates or tunes (MHz) | Upper frequency of measurement range<br>(MHz)                           |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Below 1.705                                                                                            | 30.                                                                     |
| 1.705-108                                                                                              | 1000.                                                                   |
| 108-500                                                                                                | 2000.                                                                   |
| 500-1000                                                                                               | 5000.                                                                   |
| Above 1000                                                                                             | 5th harmonic of the highest frequency or 40<br>GHz, whichever is lower. |

Receiver Setup:

| Frequency: (f)    | Detector type | Measurement receiver bandwidth |         |  |  |
|-------------------|---------------|--------------------------------|---------|--|--|
| (MHz)             | Detector type | RBW                            | VBW     |  |  |
| 30 ≤<br>f ≤ 1 000 | Quasi Peak    | 120 kHz                        | 300 kHz |  |  |
| f>1000            | Peak          | 1 MHz                          | 3 MHz   |  |  |
| f ≥1000           | Average       | 1 MHz                          | 3 MHz   |  |  |



### 4.2.2.Test Procedures

Test limits and test methods reference FCC 47 CFR Part 15.109.

- Below 1GHz, the measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 m above the ground at a 3 m semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Above 1GHz, the measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 m above the ground at a 3 m semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 3. The height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receiver peak detector mode.
- 5. Pre scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 6. For above 1GHz, If the emission level of the EUT In "Peak Detection" mode is 20 dB lower than the "Average" limit (means that the emission level in "Peak Detection" mode also complies with the limit in "Average Mode"), testing will be stopped and "Peak" values of the EUT will be reported, otherwise, the emissions of the EUT will be measured in "Average Mode" again and then reported.
- All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz).
- 8. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.(above 1GHz).



### 4.2.3.Test Set-up







### 4.2.4.Test Results

#### **Below 1GHz**

| Product M               | lodel:           | V Max             |                  | Lc                | ocation           |                      | 3m chamber   |              |  |
|-------------------------|------------------|-------------------|------------------|-------------------|-------------------|----------------------|--------------|--------------|--|
| Environme<br>Conditions | ental<br>s       | 22°C,45           | % RH             | Τe                | est Mode          |                      | Mode 1       |              |  |
| Antenna F               | Pole             | Horizont          | al               | R                 | ЗW                |                      | 120 kHz      |              |  |
| Tested by               |                  | Stone Ta          | ang              | Те                | est Resul         | ts                   | Pass         |              |  |
| Test Date               |                  | 2023-01           | -08              |                   |                   |                      |              |              |  |
| Note:                   |                  |                   |                  |                   |                   |                      |              |              |  |
|                         |                  |                   |                  |                   |                   |                      |              |              |  |
|                         |                  |                   |                  |                   |                   |                      |              |              |  |
| 00.0                    | dB:0//m          |                   |                  |                   |                   |                      |              |              |  |
| 80.0                    | dbdy/m           |                   |                  |                   |                   |                      |              |              |  |
| 70 -                    |                  |                   |                  |                   |                   |                      |              | ++           |  |
| 60 -                    |                  | + + +             |                  |                   |                   |                      |              | ++           |  |
| 50 -                    |                  |                   |                  |                   |                   |                      | EN15022 B    |              |  |
|                         |                  |                   |                  |                   |                   |                      | Maigin -6 dB |              |  |
| 40                      |                  |                   |                  |                   |                   |                      |              |              |  |
| 30                      |                  |                   | 1 5 3            |                   |                   |                      |              |              |  |
| 20                      |                  |                   | AAA              | 4 5               | 6                 |                      |              | a management |  |
| 10                      | 1 march          | march             | MW               | MAL               | Multi             | mar about mandar and | section.     |              |  |
|                         | 14.40            |                   |                  |                   |                   |                      |              |              |  |
| 0                       |                  |                   |                  |                   |                   |                      |              |              |  |
| -10                     |                  |                   |                  |                   |                   |                      |              |              |  |
| 30.0                    | 000              | 60.00             |                  | (MHa              | d                 | 300.00               |              | 1000.000     |  |
| No. Fre                 | equency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB)       | Detector     | P/F          |  |
| 1 7                     | 8.1388           | 52.10             | -27.89           | 24.21             | 40.00             | -15.79               | QP           | Р            |  |
| 2 9                     | 1.4947           | 50.24             | -27.82           | 22.42             | 40.00             | -17.58               | QP           | Р            |  |
| 3 * 10                  | 05.6414          | 53.41             | -27.67           | 25.74             | 40.00             | -14.26               | QP           | P            |  |
| 4 11                    | 19.8555          | 43.24             | -27.50           | 15.74             | 40.00             | -24.26               | QP           | P            |  |
| 5 15                    | 50 2337          | 45.16             | -27.21           | 17.95             | 40.00             | -22.05               |              | P            |  |
| 20                      | 10.2001          | 42.07             | -20.04           | 10.23             | 47.00             | -30.11               | U.F          | F            |  |
|                         |                  |                   |                  |                   |                   |                      |              |              |  |
|                         |                  |                   |                  |                   |                   |                      |              |              |  |

- 1. Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.
   Measurement= Reading + Correct Factor.
   Over = Result - Limit



| Produ            | ct Model:                     | V Max             |          |               | Lo                | cation            |                | 3m cham             | ber                      |  |
|------------------|-------------------------------|-------------------|----------|---------------|-------------------|-------------------|----------------|---------------------|--------------------------|--|
| Enviro<br>Condit | nmental<br>tions              | 22°C,45           | % R      | Н             | Те                | est Mode          |                | Mode 1              |                          |  |
| ntenr            | na Pole                       | Vertical          |          |               | RE                | 3W                |                | 120 kHz             |                          |  |
| estec            | d by                          | Stone Ta          | ang      |               | Те                | st Resul          | ts             | Pass                |                          |  |
| est D            | ate                           | 2023-01-          | -08      |               |                   |                   |                |                     |                          |  |
| lote:            |                               |                   |          |               |                   |                   |                |                     |                          |  |
|                  | 80.0 dBuV/m<br>70<br>60<br>50 |                   |          |               |                   |                   |                | EN\$503<br>Margin - | 2 <u>8_3n_QP</u><br>6 d8 |  |
|                  | 10<br>-10                     |                   | m /      |               | ann an the        | Jun               |                |                     |                          |  |
|                  | -20 30.000                    | 60.00             |          |               | (MHz              | )                 | 300.00         |                     | 1000.000                 |  |
| No.              | Frequency<br>(MHz)            | Reading<br>(dBuV) | Fa<br>(d | actor<br>B/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector            | r P/F                    |  |
| 1                | 51.4806                       | 47.26             | -2       | 8.03          | 19.23             | 40.00             | -20.77         | QP                  | P                        |  |
| 2                | 72.5915                       | 46.35             | -2       | 7.91          | 18.44             | 40.00             | -21.56         | QP<br>OP            | P                        |  |
| 2                | 92.1300                       | 54.42             | -2       | 7.67          | 26.75             | 40.00             | -13.25         |                     | P                        |  |
| 3 4 *            | 105.6414                      |                   |          | 7.04          | 18.45             | 40.00             | -21.55         | QP                  | <br>P                    |  |
| 3<br>4 *<br>5    | 105.6414<br>158.1123          | 45.66             | -2       | 1.21          | 10.40             | -                 | -              | -                   |                          |  |

- 1. Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.
- Measurement= Reading + Correct Factor.
  Over = Result Limit



#### Above 1GHz

| Produc            | ct Model:            | V Max              |                  |                            | Loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation            | 3m cł        | 3m chamber |  |  |  |  |
|-------------------|----------------------|--------------------|------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|------------|--|--|--|--|
| Enviroi<br>Condit | nmental<br>ions      | 22°C,45% RH        |                  |                            | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Mode           | Mode         | Mode 1     |  |  |  |  |
| Antenr            | na Pole              | Horizonta          | al               |                            | RBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                | 1 MH         | z          |  |  |  |  |
| rested            | l by                 | Stone Ta           | ng               |                            | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Results        | Pass         |            |  |  |  |  |
| est D             | est Date 2022-12-18  |                    |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |            |  |  |  |  |
| Note:             |                      |                    |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |            |  |  |  |  |
|                   | 80.0 d8uV/m          |                    |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | FCC ABOVE_1  | 6_PEAK     |  |  |  |  |
|                   | 70                   |                    |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |            |  |  |  |  |
|                   | 50                   |                    |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | FCC ABOVE_1  | 6_AVG      |  |  |  |  |
|                   | 50 1<br>40 X         | 2                  |                  |                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | man          | ~~~~       |  |  |  |  |
|                   | 30                   | man and the second | -                | and a short for the second | and the second s |                  |              |            |  |  |  |  |
|                   | 20                   |                    |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |            |  |  |  |  |
|                   | 10                   |                    |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |            |  |  |  |  |
|                   | 0                    |                    |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |            |  |  |  |  |
|                   | -10                  |                    |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |            |  |  |  |  |
|                   | -20 1000.000         |                    |                  | (MHz                       | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |              | 6000.000   |  |  |  |  |
| No.               | Frequency<br>(MHz)   | Reading<br>(dBuV)  | Factor<br>(dB/m) | Level<br>(dBuV/m)          | Limit<br>(dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Margin<br>) (dB) | Detector     | P/F        |  |  |  |  |
| 1                 | 1000.0000            | 45.51              | -3.37            | 42.14                      | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -31.86           | peak         | Р          |  |  |  |  |
| 2                 | 1469.950             | 70.35              | -32.04           | 38.31                      | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -35.69           | peak         | P          |  |  |  |  |
| 3                 | 1872.203             | 67.14              | -31.71           | 35.43                      | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -38.57           | peak         | P          |  |  |  |  |
| 4                 | 2595.434             | 69.92              | -30.84           | 39.08                      | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -34.92           | peak         |            |  |  |  |  |
| 6 *               | 5819.996             | 77.76              | -30.01           | 43.32                      | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -23.26           | peak         | P          |  |  |  |  |
| 5 6 *             | 3581.325<br>5819.996 | 73.33<br>77.76     | -30.01<br>-27.02 | 43.32                      | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -30.68<br>-23.26 | peak<br>peak | P<br>P     |  |  |  |  |

- Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically. Measurement= Reading + Correct Factor. 1.
- 2.
- Over = Result Limit 3.



|                                                                                                                                                | V Max                                                          |                                                                    |                                                                | Loca                                                           | Location                                                         |                                          | 3m chamber              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------|-------------------------|--|
| Invironmental<br>Conditions                                                                                                                    | 22°C,45% RH                                                    |                                                                    |                                                                | Test                                                           | Test Mode                                                        |                                          | Mode 1                  |  |
| Antenna Pole                                                                                                                                   | itenna Pole Vertical                                           |                                                                    |                                                                | RBV                                                            | RBW                                                              |                                          | 1 MHz                   |  |
| ested by Stone Tang                                                                                                                            |                                                                |                                                                    |                                                                | Test                                                           | Test Results                                                     |                                          | Pass                    |  |
| est Date 2022-12-18                                                                                                                            |                                                                |                                                                    |                                                                |                                                                |                                                                  | <b>I</b>                                 |                         |  |
| Note:                                                                                                                                          |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
|                                                                                                                                                |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
| 80.0 dBuV/m                                                                                                                                    |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
| 70                                                                                                                                             |                                                                |                                                                    |                                                                |                                                                |                                                                  | FCC ABOVE_10                             | I_PEAK                  |  |
| 03                                                                                                                                             |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
|                                                                                                                                                |                                                                |                                                                    |                                                                |                                                                |                                                                  | FCC ABOVE_10                             | i_AVG                   |  |
| 50                                                                                                                                             |                                                                |                                                                    |                                                                |                                                                | 4                                                                |                                          | <u>~~</u>               |  |
| 40 1                                                                                                                                           | Mus Marian                                                     | hut 1                                                              | 2<br>martine                                                   |                                                                | man                                                              | www                                      |                         |  |
| 30                                                                                                                                             | and a contraction of the second                                | entransistingin berneler                                           |                                                                |                                                                |                                                                  |                                          |                         |  |
| 20                                                                                                                                             |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
| 20                                                                                                                                             |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
| 10                                                                                                                                             |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
| 0                                                                                                                                              |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
| -10                                                                                                                                            |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
| -20                                                                                                                                            |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
|                                                                                                                                                |                                                                |                                                                    | (MHz                                                           | )                                                              |                                                                  |                                          | 6000.000                |  |
| 1000.000                                                                                                                                       |                                                                |                                                                    |                                                                |                                                                |                                                                  |                                          |                         |  |
| No. Frequency<br>(MHz)                                                                                                                         | Reading<br>(dBuV)                                              | Factor<br>(dB/m)                                                   | Level<br>(dBuV/m)                                              | Limit<br>(dBuV/m)                                              | Margin<br>(dB)                                                   | Detector                                 | P/F                     |  |
| No.      Frequency<br>(MHz)        1      1134.847                                                                                             | (dBuV)                                                         | Factor<br>(dB/m)<br>-30.13                                         | Level<br>(dBuV/m)<br>39.21                                     | Limit<br>(dBuV/m)<br>74.00                                     | Margin<br>(dB)<br>-34.79                                         | Detector<br>peak                         | P/F<br>P                |  |
| No.      Frequency<br>(MHz)        1      1134.847        2      2140.330                                                                      | Reading<br>(dBuV)<br>69.34<br>69.34                            | Factor<br>(dB/m)<br>-30.13<br>-31.40                               | Level<br>(dBuV/m)<br>39.21<br>37.94                            | Limit<br>(dBuV/m)<br>74.00<br>74.00                            | Margin<br>(dB)<br>-34.79<br>-36.06                               | Detector<br>peak<br>peak                 | P/F<br>P<br>P           |  |
| No.      Frequency<br>(MHz)        1      1134.847        2      2140.330        3      2875.545                                               | Reading<br>(dBuV)<br>69.34<br>69.34<br>71.28                   | Factor<br>(dB/m)<br>-30.13<br>-31.40<br>-30.18                     | Level<br>(dBuV/m)<br>39.21<br>37.94<br>41.10                   | Limit<br>(dBuV/m)<br>74.00<br>74.00<br>74.00                   | Margin<br>(dB)<br>-34.79<br>-36.06<br>-32.90                     | Detector<br>peak<br>peak<br>peak         | P/F<br>P<br>P           |  |
| No.      Frequency<br>(MHz)        1      1134.847        2      2140.330        3      2875.545        4      3601.918        5      4898.516 | Reading<br>(dBuV)<br>69.34<br>69.34<br>71.28<br>72.04<br>76.37 | Factor<br>(dB/m)<br>-30.13<br>-31.40<br>-30.18<br>-30.03<br>-28.78 | Level<br>(dBuV/m)<br>39.21<br>37.94<br>41.10<br>42.01<br>47.59 | Limit<br>(dBuV/m)<br>74.00<br>74.00<br>74.00<br>74.00<br>74.00 | Margin<br>(dB)<br>-34.79<br>-36.06<br>-32.90<br>-31.99<br>-26.41 | Detector<br>peak<br>peak<br>peak<br>peak | P/F<br>P<br>P<br>P<br>P |  |

- 1. Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.Measurement= Reading + Correct Factor.
- 3. Over = Result Limit



# 5. Appendix-A Test Photographs



Above 1G RE





CE





# 6. Appendix-B Photographs of EUT





Page 25 / 36











































# STATEMENT

- 1. It is invalid if the report has no Inspection Seal.
- 2. It is invalid that the copy one is not sealed again.
- 3. It is invalid if the report has no signature or seal of tester, auditor, or approver.
- 4. It is invalid if the report is altered.
- 5. Objections to this report should be submitted to the inspection organization in 15 days of receipting the report. It is not accepted if overdue.
- 6. The test report is valid for above tested sample only.
- 7. Partial replica is prohibited without permission.
- 8.  $\Rightarrow$  is indicated that the item is without the scope of CNAS,CMA,CAL

Accredited Testing.

9. Forge, tamper the report, the organization will be liable for any legal liability incurred here from.

Address: 101, 3 # Factory Building, Gongjin Electronics, Shatin Community, Kengzi Street, Pingshan District, Shenzhen City,Guangdong province China

Tel: 0755-27087573

Fax: 0755-27087573

ZipCode:518118

E-mail: liuhaitao@tirt.com.cn

Web Sites: http://www.tirt.com.cn

#### (END OF REPORT)