

Product Name: Smart Phone	Report No: CE2022-06453E
Product Model: V Max	Security Classification: Open
Version: A0	Total Page: 68

TIRT Testing Report

Prepared By:	Checked By:	Approved By:
Stone Tang	Randy Lv	Daniel Chen

EMC TEST REPORT

Product No:	20221220021903
Product Name:	Smart Phone
Product Model:	V Max , S100Pro All models are with same schematic, The only diffrences are model no. V Max is main test model, S100Pro, is the adding model. No other differences.
Date of Receipt:	12.12.2022
Date of Test:	12.12.2022~ 12.26.2022
Issued Date:	12.27.2022
Testing Lab:	TIRT

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Branch of Beijing TIRT Technology Service Co.,Ltd. Laboratory. This document may be altered or revised by Shenzhen Branch of Beijing TIRT Technology Service Co.,Ltd. Laboratory . Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.

Table of Contents

1.	Ger	neral information	6
	1.1.	Basic information of EUT	6
	1.2.	Applicable standard	7
2.	Mea	asured equipment list	8
	2.1.	Test facility	8
	2.2.	Test instruments list	8
	2.3.	Measurement uncertainty	.11
3.	Tes	t system information	12
	3.1.	Test result summary	.12
	3.2.	Description of test mode	.13
	3.3.	Configure of system under test	.15
	5.1.	Description of support units	.16
6.	Emi	ission test	17
	6.1.	Conduction emission test	.17
		6.1.1. Limit	.17
		6.1.2. Test procedures	.17
		6.1.3. Test set-up	.18
		6.1.4. Test results	.19
	6.2.	Radiated emission test	.21
		6.2.1. Limit	.21
		6.2.2. Test procedures	.22
		6.2.3. Test set-up	.23
		6.2.4. Test results	.25
	6.3.	Harmonics current measurement	.29
		6.3.1. Limit	.29
		6.3.2. Test procedures	.30
		6.3.3. Test set-up	.30
		6.3.4. Test results	.31
	6.4.	Voltage fluctuation and flicker measurement	.32
		6.4.1. Limit	.32
		6.4.2. Test procedures	.32
		6.4.3. Test set-up	.32
		6.4.4. Test results	.33
7.	Imn	nunity test	34
	7.1.	General description	.34
	7.2.	Performance of criteria	.36
	7.3.	Electrostatic discharge immunity test(ESD)	.37
		7.3.1. Test specification	.37
		7.3.2. Test procedures	.37
		7.3.3. Test set-up	.38

8. 9.

7.3.4.	Test results	
7.4. Radio	o frequency electromagnetic immunity test(RS)	
7.4.1.	Test specification	
7.4.2.	Test procedures	
7.4.3.	Test set-up	41
7.4.4.	Test results	
7.5. Electi	rical fast transient(EFT)	
7.5.1.	Test specification	
7.5.2.	Test procedures	
7.5.3.	Test set-up	
7.5.4.	Test results	
7.6. Surge	e immunity test	
7.6.1.	Test specification	46
7.6.2.	Test procedures	
7.6.3.	Test set-up	
7.6.4.	Test Results	
7.7. Cond	ucted radio frequency disturbances (CS)	
7.7.1.	Test specification	
7.7.2.	Test procedures	
7.7.3.	Test set-up	53
7.7.4.	Test results	54
7.8. Volta	ge dips and Voltage interruption	
7.8.1.	Test specification	
7.8.2.	Test procedures	55
7.8.3.	Test set-up	
7.8.4.	Test results	
Appendix	-A Test photographs	57
Appendix	-B Photographs of EUT	62

History of the test report

Original Report Issue Date: 2022/12/21

•No additional attachment

OAdditional attachments were issued following record

Attachment No.	Issue Date	Description

1. General information

1.1. Basic information of EUT

Product Name/ Model	V Max
Brand Name	DOOGEE
Product Description	Bluetooth (BR+EDR+LE), WiFi 2.4G, WiFi 5G, GNSS, 2G, 3G, 4G, FM
Adapter /Model /Description	HJ-PD20W-EU INPUT:100-240V~50/60Hz 0.6A MAX OUTPUT:5Vdc 3A, 9Vdc 2.22A, 12Vdc 1.67A,
Hardware Version	M105-MUB-V1
Software Version	DOOGEE-V-MAX-EEA-Android12.0-20221130
Name of Application	Shenzhen DOOGEE Hengtong Technology CO.,LTD
Address	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.22, Longhua New District, Shenzhen, China
Name of Manufacturer	Shenzhen DOOGEE Hengtong Technology CO.,LTD
Manufacturer	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.22, Longhua New District, Shenzhen, China
Name of Factory	Shenzhen DOOGEE Hengtong Technology CO.,LTD
Address	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.22, Longhua New District, Shenzhen, China

Note:

- 1. For more detailed features description, please refer to the manufacturer's or the User's manual of the EUT.
- 2. The EUT's highest operating frequency is \geq 108MHz

1.2. Applicable standard

Applicable Standard		
EN 55032:2015+A1:2020		
EN IEC 61000-3-2:2019+A1:2021		
EN 61000-3-3:2013+A2:2021		
EN 55035:2017+A11:2020		
EN 301 489-1 V2.2.3		
EN 301 489-3 V2.1.1		
EN 301 489-17 V3.2.4		
EN 301 489-19 V2.1.1		
EN 301 489-52 V1.2.1		
EN 61000-4-2:2009		
EN 61000-4-3: 2006+A1: 2008+A2: 2010		
EN 61000-4-4:2012		
EN 61000-4-5:2014 +A1:2017		
EN 61000-4-6:2013 +AC:2015		
EN 61000-4-11:2004 +A1:2017		

2. Measured equipment list

2.1. Test facility

All measurement facilities used to collect the measurement data are located at Plant 3,Gongjindianzi,Shatian, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China

2.2. Test instruments list

Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
Radiated Emission						
EMI Receiver	Rohde&Schwarz	ESR7	102013	2022/11/10	2023/11/09	
Integral Antenna	Schwarzbeck	VULB 9163	VULB 9163-1151	2022/11/21	2023/11/20	
Integral Antenna	Schwarzbeck	BBHA 9120D	BBHA 9120D 1201	2022/11/21	2023/11/20	
Preamplifier	CHENYI	EMC012645SE	980417	2022/03/17	2023/03/16	
ECSI RF IN RF Cable	Rohde&Schwarz	AP-X1	١	2022/11/10	2023/11/09	
Conducted Emission						
EMI Receiver	Rohde&Schwarz	ESR3	1316.3003K03-1 02081-Ev	2022/11/10	2023/11/09	
AMN	Rohde&Schwarz	ENV216	3560.6550.05	2022/11/21	2023/11/20	
AMN	Schwarzbeck	NSLK8127	#829	2022/11/21	2023/11/20	
AAN	TESEQ	T200A	25702	2022/03/17	2023/03/16	
AAN	TESEQ	T400A	24848	2022/11/10	2023/11/09	
AAN	TESEQ	Т800	24819	2022/11/10	2023/11/09	
AAN	Schwarzbeck	CATE5 8158	#171	2022/11/21	2023/11/20	
AAN	Schwarzbeck	CATE6 NTFM8158	#128	2022/11/21	2023/11/20	
ECSI RF IN RF Cable	Rohde&Schwarz	RP-X1	١	2022/03/17	2023/03/16	

Report No.: CE2022-06453E

ECSI RF IN RF Cable	Rohde&Schwarz	Sapre sm	١	2021/11/10	2022/11/09	
ESD						
ESD Generator	3ctest	ESD-20	E17000105	2022/11/10	2023/11/09	
ESD Generator	emtest	dito	E0138118302	2022/11/10	2023/11/09	
Temp&Humidity Recorder	Lime	CGG1	JL248	2022/07/23	2023/07/22	
Digital air pressure gauge	Leeruo	BY-2003P	١	2022/11/03	2023/11/02	
		RS				
Signal generator	DARE	CTR1009B/RGN60 00B	16100025SN020	2022/11/10	2023/11/09	
Power meter	DARE	RPR2006C	18100006SNO0 3	2022/11/10	2023/11/09	
Power meter	DARE	RPR2006C	18100006SNO0 4	2022/11/10	2023/11/09	
Power amplifier	Bonn	BLWA0820-200/10 0	1811690	2022/11/10	2023/11/09	
Integral Antenna& Power amplifier	DARE	RFS2006B	16100025SNO20	١	/	
Integral Antenna	Rohde&Schwarz	STLP 9128D	STLP 9128 DN#119	١	/	
		EFT				
Ultra-compact Simulator	Emtest	UCS 500N7	E17000205	2022/11/10	2023/11/09	
Ultra-compact Simulator	3ctest	CCS500	ES0851809	2022/11/10	2023/11/09	
Coupling clamp	3ctest	/	EC0440829	2022/11/10	2023/11/09	
Coupling clamp	Emtest	HFK	0610-100	2022/11/10	2023/11/09	
Surge						
Lightning Surge Generator	3ctest	SG-5010G	EC5531109	2022/11/10	2023/11/09	
Ultra-compact Simulator	Emtest	UCS 500N7	ES0823806	2022/11/10	2023/11/09	
Lightning Surge Generator	3ctest	CWS1000CM	ES3561801	2022/11/10	2023/11/09	
CDN	Emtest	SNV 508N1	V1047108029	2022/11/10	2023/11/09	

Report No.: CE2022-06453E

CDN	3ctest	CDN405T8A1	ES2731802	2022/11/10	2023/11/09		
	CS						
Conducted Immunity Test System	Frankonia	CIT-10	E6701078605	2022/11/10	2023/11/09		
Conducted Immunity Test System	Emtest	CWS 500N	46271	2022/11/10	2023/11/09		
CDN	Luthi	L-801 M2/M3	2607	2022/11/10	2023/11/09		
CDN	TESEQ	T800	36200	2022/11/10	2023/11/09		
CDN	TESEQ	T200	53140	2022/11/10	2023/11/09		
Clamp	Luthi	EM101	35978	2022/11/10	2023/11/09		
	PFMF						
MFO/Magnetic Field Option	3ctest	CCS500	ES0851809	2022/11/10	2023/11/09		
Magnetic Field Coils	3ctest	TCXS111	ES4621820	2022/11/03	2023/11/02		
		DIP					
Ultra-compact Simulator	Emtest	UCS 500N7	E0401223005	2022/11/10	2023/11/09		
Ultra-compact Simulator	3ctest	CCS500	ES0851809	2022/11/10	2023/11/09		
Tapped transformer	Emtest	V4780 S2	E0401223006	2022/11/10	2023/11/09		
Harmonics & Flickers							
Harmonics and Flicker Analyzer	Ametek	PACS-1	1708A01119	2022/09/13	2023/09/12		
Power Source	Ametek	5001IX-CTS-400	1708A4718	2022/09/13	2023/09/12		

2.3. Measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95%

confidence level using a coverage factor of k=2.

Measurement uncertainty levels of TIRT Lab			
Measurement	Measurement Frequency Range	U(dB)	
Radiated Emission (3m)	30MHz~1GHz	4.6	
Radiated Emission (3m)	1GHz \sim 6GHz	4.9	
Conduction Emissions	150kHz~30MHz	3.1	

3. Test system information

3.1. Test result summary

Test procedures according to the technical standard(s):

Emission								
Standard	ltem	Result	Remarks	Tested in Lab				
	Conducted (Main Port)	PASS	Class B	TIRT				
EN55032	Conducted (Telecom Port)	NA	Class B	NA				
	Radiated	PASS	Class B	TIRT				
EN 61000-3-2	Harmonic current emissions	NA	Class A	NA				
EN 61000-3-3	Voltage fluctuations & flicker	PASS	/	TIRT				

Immunity								
Standard	Item	Result	Remarks	Tested in Lab				
EN 61000-4-2	ESD	PASS	Criterion B	TIRT				
EN 61000-4-3	RS	PASS	Criterion A	TIRT				
EN 61000-4-4	EFT	PASS	Criterion B	TIRT				
EN 61000-4-5	Surge	PASS	Criterion B	TIRT				
EN 61000-4-6	CS	PASS	Criterion A	TIRT				
EN 61000-4-11	Voltage dips & voltage variations	PASS	Criterion B/B/C/C	TIRT				

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The power consumption of EUT is less than 75W and no limits apply.
- (3) Voltage dip: 0% residual voltage for 0.5 cycle Performance Criteria B
 Voltage dip: 0% residual voltage for 1 cycle Performance Criteria B
 Voltage dip: 70% residual voltage for 25 cycle (at 50Hz) Performance Criteria C
 Voltage Interruption: 0% residual voltage for 250 cycle (at 50Hz) Performance Criteria C
- (4) TIRT: Lab. Shenzhen Branch of Beijing TIRT Technology Service Co.,Ltd.

3.2. Description of test mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively. The test data reflect the worst model.

For Radiated Test					
Final Test Mode	Description				
1	Charging and Camera Shooting				
2	Charging and Memory Playing				
3	Charging and FM Playing				
4	Charging and Data Transmitting				
5	2G+WiFi+BT+Charging				
6	3G+BT+Charging				
7	4G+BT+Charging				
8	Charging+GNSS				
9	Charging+5.8G SRD				

For Conducted Test					
Final Test Mode	Description				
1	Charging and Camera Shooting				
2	Charging and Memory Playing				
3	Charging and FM Playing				
4	Charging and Data Transmitting				
5	2G+WiFi+BT+Charging				
6	3G+BT+Charging				
7	4G+BT+Charging				
8	Charging+GNSS				
9	Charging+5.8G SRD				

	For EMS Test
Final Test Mode	Description
1	Full SYSTEM

3.3. Configure of system under test

Test topology

5.1. Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model	Brand	FCC ID	Series No
1	Mobile notebook	L450	Think	Doc	/

6. Emission test

6.1. Conduction emission test

6.1.1. Limit

FREQUENCY (MHz)	Class A	A (dBuV)	Class B (dBuV)			
	Quasi-peak	Average	Quasi-peak	Average		
0.15 - 0.5	79	66	66 - 56	56 - 46		
0.50 - 5.0	73	60	56	46		
5.0 - 30.0	73	60	60	50		

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

6.1.2. Test procedures

- 1. Test limits and test methods reference EN 55032 Appendix A and FCC Part 15b.
- 2. The EUT was placed 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (AMN). All other support equipment powered from additional AMN. The AMN provide 50 Ohm/ 50 uH of coupling impedance for the measuring instrument.
- 3. Interconnecting cables that hang closer than 0.4 m to the ground plane shall be folded back and forth in the center forming a bundle 0.3 m to 0.4 m long.
- 4. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance.
- 5. The frequency range from 150 kHz to 30 MHz was searched.
- 6. Actual test configuration, please refer to the related Item EUT Test Photos.
- 7. AAN, CP or CVP at least 0.8 m from nearest part of EUT chassis.
- 8. The thickness of the insulation shall not be more than 150 mm.

6.1.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the test configuration

6.1.4. Test results

Product N	Model:	V30Pro				RBW				9 kHz	2	
Environm Condition	nental ns	25° C,45	25°C,45% RH				Test Mode			Mode	e 1	
Tested by	у	Su Dang	Su Dang							PASS	6	
Test Date	Э	2022-12-7	13									
Note: 230	Note: 230V/50Hz											
Line												
80.0	0 dBu¥											7
70									EN55032	2 CE-Class	B_QP	
50									EN55032	2 CE-Class	8_AVe	
40												
30	1.1	1.10	3	5	₹ 1 ¥1	ы. tol	Ասևս	malla		M.		
	MAN	() I Mappy	June Land	Million .	A	1MV	VVV	V VY	M	h.,		
20			A MARINA	5	\$ 10	40 V				12	MWW/Wikw.low peak	
10	- Kr	monne	hundrer	mutritud	- Anti	uuu	C. M.	(pands	inter of the second	and the man		
U												
-10												
	0.150	0.	500		(MHz)		5.000				30.000	
No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Rem	ark		
1	0.1905	26.26	10.18	36.44	64.01	-27.57	QP	Р				
2	0.1905	-0.93	10.18	9.25	54.01	-44.76	AVG	P				_
4	0.5233	-1.49	10.26	8.77	46.00	-25.55	AVG	P				-
5	1.3020	22.25	10.27	32.52	56.00	-23.48	QP	P				-
6	1.3020	0.74	10.27	11.01	46.00	-34.99	AVG	Р				
7	1.7023	20.15	10.29	30.44	56.00	-25.56	QP	Ρ				
8	1.7023	1.86	10.29	12.15	46.00	-33.85	AVG	P				_
9 *	2.3054	22.46	10.28	32.74	46.00	-23.26		P				-
11	12.1200	24.94	10.20	35.14	60.00	-24.86	QP	P				-
12	12.3315	1.68	10.18	11.86	50.00	-38.14	AVG	Р				

Note: The other emission levels were very low against the limit.

Product I	Model:	V30Pro				RBW			9 kHz	
Environm Condition	าental าร	25°C,45% RH				Test Mode			Mode 1	
Tested b	у	Su Dang				Test Results PASS				
Test Date	e	2022-12-7	13							
Note: 230V/50Hz										
Neutral										
90	n dRuV									_
00.										
70										
60								E	N55032 CE-Class B_QP	
50								E	N55032 CE-Class B_AVe	
40										
30 20 10					man	MM V Eredened	un m		12 11 11 11 11 11 11 AVG	
-10										
-20	0.150	0.	500		(MHz)		5.000		30.000	
No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.2310	22.92	10.20	33.12	62.41	-29.29	QP	Р		
2	0.2310	-1.65	10.20	8.55	52.41	-43.86	AVG	Р		
3*	0.5010	19.39	10.26	29.65	56.00	-26.35	QP	Р		
4	0.5010	-0.89	10.26	9.37	46.00	-36.63	AVG	P		_
5	1.3020	17.27	10.25	27.52	56.00	-28.48	QP	P		_
6	1.3020	-1.11	10.25	9.14	46.00	-36.86	AVG	P		_
/	2.7014	10.17	10.27	26.44	56.00	-29.56	QP	P		_
0	2.7014	-2.30	10.27	0.31	40.00	-30.11	AVG	P		_
10	7 0484	17.85	10.27	28.13	60.00	-40.09	OP	P		
11	12,1290	-0.47	10.19	9.72	50.00	-40.28	AVG	P		_
12	12.3180	22.57	10.17	32.74	60.00	-27.26	QP	P		

Note: The other emission levels were very low against the limit.

6.2. Radiated emission test

6.2.1. Limit

Requirements for radiated emissions at frequencies up to 1 GHz for class B equipment

EN55032

Frequency		Measureme	nt	
Range	Facility	Distance	Detector type /	Class B limits
MHz	raomy	m	bandwidth	dB(µV/m)
30 to 230	OATS/SA	3	Quasi Peak /	40
230 to 1 000	C		120 kHz	47

Requirements for radiated emissions at frequencies above 1 GHz for class B equipment

EN55032

Erequency Range					
		Distance	Detector type /	Class B limits	
MHZ	Facility	m	bandwidth	dB(µV/m)	
1 000 to 3 000			Average/1 MHz	54	
3 000 to 6 000	FSOATS	3			
1 000 to 3 000		, , , , , , , , , , , , , , , , , , ,	Peak/1 MHz	74	
3 000 to 6 000					

6.2.2. Test procedures

- 1. Test limits and test methods reference EN 55032 Appendix A and FCC Part 15b.
- Below 1GHz, the measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 m above the ground at a 3 m semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- Above 1GHz, the measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 m above the ground at a 3 m semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. The initial step in collecting radiated emission data is a receiver peak detector mode.
- Pre scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 7. For above 1GHz, If the emission level of the EUT In "Peak Detection" mode is 20 dB lower than the "Average" limit (means that the emission level in "Peak Detection" mode also complies with the limit in "Average Mode"), testing will be stopped and "Peak" values of the EUT will be reported, otherwise, the emissions of the EUT will be measured in "Average Mode" again and then reported.
- All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz).
- 9. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.(above 1GHz).

Page 22 / 69

6.2.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration

6.2.4. Test results

Below 1GHz	

	Model	V30Pro					Location		3m chamber					
invironr Conditio	nental ns	22°C	C,45°	% F	RH				Test Mod	le	Mod	e 1		
ntenna	Pole	Verti	cal						RBW		120	kHz		
ested b	by	Su D	ang						Test Res	ults	PAS	S		
est Dat	- -	2022	- 12	16							· · · ·			
CSI Dai	.0	2022	12-	10										
lote:														
	80.0 dBuV	/m									_			
	70													
	60													
	50										EN	55032 B	- 3m OP	
	40										Ma	gin -6 dl	B	
	30													
					1		2						al new	
	20				M		ስሆ	5				1.1.1.1.1.1.00	and a second of the	
	20	p. Jas. M. Sonnag	and and		Λ	V	V	mint	n Allenander	lense ukid makelor mining	when me have	ي. پايد وقار ماند د		
	20	p	port-aug	Ju	Μ	\checkmark	V	mart	- Aller and a	lender skiel makeler for mener	whanson	y you did a serie		
	20 10 ¹⁰	ter free of the second	not and	مىلى	<u> </u>			thur the	- Allerander	lender uter andere and and	what many to	y dan din atau		
	20 10 10 -10 -20	her and the herein and	,	-J.M				mat	Mariant	length childrand through the second sec		<mark>, , , , , , , , , , , , , , , , , , , </mark>		
	20 10 .10 .20 30.000	production and	6	0.00				<u>)</u> М. М. М	z)	300.00		, , , , , , , , , , , , , , , , , , ,	1000.000	
No.	20		60 Read	0.00		F: (dl	actor B/m)	(MH Level (dBuV/m)	z]	300.00 Margin (dB)	Dete	ctor	1000.000	
No.	20 10 -10 -20 30.000 Frequer (MHz) 78.138	ICY 8	Read (dBu	0.00		Fa (dl -2	actor B/m) 7.89	мн (Мн (dBuV/m) 24.21	z) Limit (dBuV/m) 40.00	300.00 Margin (dB) -15.79	Dete	ctor	1000.000 P/F	
No.	20 10 	ICY 0	60 Read (dBu 52.7 50.2	0.00 0.00		F; (dl -2	actor B/m) 7.89 7.82	(МН селена (dBuV/m) 24.21 22.42	z] Limit (dBuV/m) 40.00 40.00	300.00 Margin (dB) -15.79 -17.58	Dete	ector P	1000.000 P/F P	
No. 1 2 3 *	20 10 -10 -20 30.000 Frequer (MHz) 78.138 91.494 105.64	ICY 88 7 14	Read (dBu 52. 50.2	0.00 0.00 0.00 0.00 10 24 41		Fa (dl -2 -2 -2	actor B/m) 7.89 7.82 7.67	мн смн (dBuV/m) 24.21 22.42 25.74	z) Limit (dBuV/m) 40.00 40.00 40.00	Margin (dB) -15.79 -17.58 -14.26	Dete	ector P P	1000.000 P/F P P	
No. 1 2 3 * 4	20 10 10 -10 -20 30.000 Frequer (MHz) 78.138 91.494 105.64 119.855 158.11	ACCY 14	60 Reac (dBu 52. 53. 43.	0.00 0.00 10 10 24 41 24 16		Fa (dl -2 -2 -2 -2	actor B/m) 7.89 7.82 7.67 7.50 7.21	мн (мн (dBuV/m) 24.21 22.42 25.74 15.74 17.95	z) Limit (dBuV/m) 40.00 40.00 40.00 40.00	Margin (dB) -15.79 -17.58 -14.26 -22.05	Dete	ector P P P P	1000.000 P/F P P P P	

Note:

- 1. QP= Quasi-peak Reading.
- 2. The other emission levels were very low against the limit.

Report No.: CE2022-06453E

	ct Model	del V30Pro					Locat	ion		3m	cha	mb	er						
nviro ondit	nmental ions	22	°C,4	5%	Rł	4				Test I	Мо	de	Мс	Mode 1					
ntenr	na Pole	Ve	ertica	I						RBW			12	0 kH	z				
ested	l by	Su	ı Dar	ng						Test I	Re	sults	PA	SS					
ast D		20	22-1	2_16	3														
		20	22-1	2-10	<u> </u>														
ote:																			
	80.0 dBuV/r	m	_									1	1	1		_			
	70																		
	<i>'</i> 0						\square												
	60		-				$\left \right $								+	-			
	50		-				$\left \right $							EN	55032	2_8_3	3m_Q	P	
	40													Ma	ngin -I	6 dB			
															_				
	30						a .	Å							-				
	30		1		2		2	Â	5					No other spin of	m	and the second	pante	yerista	
	30 20		W. W	hour	2	-	3	Ą	My water and James	James and	Here. 6499	and the state of t	dogo water	a the second	m	and the second	, den de la	y constan	
	30 20 10 4 and a		with w	htter als	2	\downarrow	2	Â	5 My martine Annih	J.	Here. Arth	p with a way	day water	,, otorigita /*		ali and	, en de	yonin	
	30 20 10 Manham 0		W. W	htter all	2		2	Ą	Mundama Jang	J.	hare with		- Approx (1990)	er ottes giles 17	- Andrewskin		y der der	gc/804	
	30 20 10 My artist	N. Hillowski	W	htterate	2	/	2	Ą	5 1944-1944 1944-1944		the state of the		deg	ar atosphati	-	aliner th	and a	yc*864	
	30 20 10 ₩ <u>4</u> μα ² Ψων 0 -10 -20		W	h the market	2	/	2	Ą	5 Mundana Jang		Here. Arth		dennever	er ottergeler P			, dec. de la	gc/804	
	30 20 10 ₩ <u>₩</u> ₩₩ 0 -10 -20 30.000	1/191/-arts	1 W ^M W 6	0.00	2		2	Å	5 Munghina Janh (MH2	· · · · · · · · · · · · · · · · · · ·	in a free of the second s	300.00		22 Alarge / T			1	yu 464	000
No.	30 20 10 	y (Allender	1 6 Rea (dB	60.00	2	F:	acto B/m	r)	5 (MHz (MHz Level (dBuV/m)	e Limit (dBuV/n	n)	300.00 Margi (dB)	n	Dete	ector		1	9000.0	000 /F
No.	30 20 10 .10 .20 .10 .20 .30.000 Frequenc (MHz) 51.4806	×/////////////////////////////////////	Read (dB)	0.00 60.00 ding uV) 26	2	Fa (dl	acto B/m	or) 3	5 (MHz (MHz (dBuV/m) 19.23	Limit (dBuV/n 40.00	n)	300.00 Margi (dB) -20.7	n	Dete	ector		1	,,	000 /F
No.	30 20 10 .10 .20 .10 .20 .20 .20 .10 .20 .20 .20 .10 .20 .20 .10 .20 .20 .20 .20 .20 .20 .20 .2	yaylawi yaylawi Si	6 Read (dB 47. 46.	0.00 0.00 ding uV) 26 35	2	Fa (dl -2	acto B/m 8.03	or) 3	5 (MHz (dBuV/m) 19.23 18.44	Limit (dBuV/n 40.00	n)	300.00 Margi (dB) -20.77 -21.50	n 7 3			·	1	0000.C	100 /F 5
No. 1 2 3	30 20 10 -10 -20 30.000 Frequenc (MHz) 51.4806 72.5915 92.1386		Read (dB) 47. 46. 51.	0.00 ding uV) 26 35 26	2	Fa (dl -2 -2	acto B/m 8.03 7.91	or) 3 1	5 (MHz (MHz (dBuV/m) 19.23 18.44 23.45	Limit (dBuV/n 40.00 40.00	n)	300.00 Margi (dB) -20.7 -21.50 -16.55	n 7 5		ector 2P 2P	·	1		100 /F 5 5
No. 1 2 3 4 *	30 20 10 .10 .20 .10 .20 .30.000 Frequence (MHz) 51.4806 72.5915 92.1386 105.6414	2 4 4 4 4	1 6 Read (dB) 47. 46. 51. 54.	ding uV) 26 35 26 42		Fa (dl -2 -2 -2 -2	acto B/m 8.03 7.91 7.81	or) 3 1 1 7	5 (MH2 (dBuV/m) 19.23 18.44 23.45 26.75	Limit (dBuV/n 40.00 40.00 40.00	n)	300.00 Margi (dB) -20.7 -21.50 -16.55 -13.29	n 7 5 5		ector P P P P	·	1	0000.CC	000 /F 5 5 5
No. 1 2 3 4 * 5	30 20 10 10 -10 -20 30.000 Frequence (MHz) 51.4806 72.5915 92.1386 105.6414 158.1122 407	2.y	1 6 6 (dB 47. 46. 51. 54. 54.	0.00 60.00 ding uV) 26 35 26 42 66 66		Fa (dl) -2 -2 -2 -2 -2	acto B/m 3.03 7.91 7.81 7.67 7.21	or) 3 1 1 7 1	5 (MHz (dBuV/m) 19.23 18.44 23.45 26.75 18.45	Limit (dBuV/n 40.00 40.00 40.00	n)	300.00 Margi (dB) -20.77 -21.50 -16.50 -13.20 -21.50	n 7 5 5 5 5		ector PP PP	-	1	0000.C	1000 /F 22 22 22 22 22 22 22

- QP= Quasi-peak Reading.
 The other emission levels were very low against the limit.

ove	1GHz							
roduc	t Model	V30Pro			Location	:	3m chamber	
nviroi onditi	nmental ions	22°C,45% F	₹H		Test Mod	le l	Mode 1	
ntenn	na Pole	Vertical			RBW		1 MHz	
ested	by	Su Dang			Test Res	ults	PASS	
est D	ate	2022-12-16						
ote: F	ull SYSTE	M						
	80.0 dBuV/m					EN 55032 CL/	ASSB ABOVE 16 PE	AK
	60							
	50					EN 55032 CL/	A\$SB ABOVE 1G AV	/ <u>6</u>
	40 1	2 3			4 *	5 X	munimum	n the man
	30	water balling the contract	and and a second and and and and and and and and and a	and a constrained and a second se				
	20							
	10							
	0							
	-10							
	-20							
	1000.000			(MHz	:)			6000.000
								Í
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
No.	Frequency (MHz) 1089.226	Reading (dBuV) 68.85	Factor (dB/m) -29.88	Level (dBuV/m) 38.97	Limit (dBuV/m) 74.00	Margin (dB) -35.03	Detector peak	P/F P
No. 1 2 3	Frequency (MHz) 1089.226 1286.956 1484.773	Reading (dBuV) 68.85 71.21 72.09	Factor (dB/m) -29.88 -31.00 -32.12	Level (dBuV/m) 38.97 40.21 39.97	Limit (dBuV/m) 74.00 74.00 74.00	Margin (dB) -35.03 -33.79 -34.03	Detector peak peak peak	P/F P P P
No. 1 2 3 4	Frequency (MHz) 1089.226 1286.956 1484.773 2778.801	Reading (dBuV) 68.85 71.21 72.09 70.62	Factor (dB/m) -29.88 -31.00 -32.12 -30.41	Level (dBuV/m) 38.97 40.21 39.97 40.21	Limit (dBuV/m) 74.00 74.00 74.00 74.00	Margin (dB) -35.03 -33.79 -34.03 -33.79	Detector peak peak peak peak	P/F P P P P
No. 1 2 3 4 5	Frequency (MHz) 1089.226 1286.956 1484.773 2778.801 3232.462	Reading (dBuV) 68.85 71.21 72.09 70.62 72.26	Factor (dB/m) -29.88 -31.00 -32.12 -30.41 -29.89	Level (dBuV/m) 38.97 40.21 39.97 40.21 42.37	Limit (dBuV/m) 74.00 74.00 74.00 74.00 74.00	Margin (dB) -35.03 -33.79 -34.03 -33.79 -31.63	Detector peak peak peak peak peak	P/F P P P P P

Note: /

Report No.: CE2022-06453E

Produc	t Model	V30Pro			Location	ı	3m chambe	r		
Enviror Conditi	nmental ions	22°C,45% F	RH		Test Mo	ode	Mode 1			
Antenn	a Pole	Vertical			RBW 1 MHz					
Tested	by	Su Dang			Test Re	sults				
Test Da	ate	2022-12-16								
Note: F		EM								
	80.0 dBuV/m							1		
						EN 55032 (CLASSB ABOVE 1G P	EAK		
	70									
	60					EN 55032 (LASSE ABOVE 16 A	VG		
	50					211 00002 1		5 6		
		2 X		3 X	1.1.1	*				
	40 Marthausta	mound the mound that when a	man with a low and and a grant of the second s	the standy	an code contracted and a c	Sold Here				
	30									
	20									
	10									
	0									
	-10						_			
	-20									
	1000.000			(MHz	:)			6000.000		
No.	Frequency (MHz)	v Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin) (dB)	Detector	P/F		
1	1088.835	73.56	-29.88	43.68	74.00	-30.32	peak	Р		
2	1484.507	75.57	-32.12	43.45	74.00	-30.55	peak	Р		
3	2370.051	73.29	-31.19	42.10	74.00	-31.90	peak	Р		
4	3738.689	72.59	-30.21	42.38	74.00	-31.62	peak	Р		
5	5206.210	75.49	-28.09	47.40	74.00	-26.60	peak	P		
	E707 7EN	76 21	-27.08	49.13	74.00	-24.87	peak	P		

Note:/

6.3. Harmonics current measurement

6.3.1. Limit

Limits for	Class A equipment		Limits for Class D equip	oment				
Harmonics Order n	Max. permissible harmonics current A	Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A				
Od	d harmonics		Odd Harmonics only					
3	2.30	3	3.4	2.30				
5	1.14	5	1.9	1.14				
7	0.77	7	1.0	0.77				
9	0.40	9	0.5	0.40				
11	0.33	11	0.35	0.33				
13	0.21	13	0.30	0.21				
15<=n<=39	0.15x15/n	15<=n<=39	3.85/n	0.15x15/n				
Eve	en harmonics							
2	1.08							
4	0.43							
6	0.30							
8<=n<=40	0.23x8/n							

Note:

- 1. Class A and Class D are classified according to item 7.4.3.
- According to section 7 of EN 61000-3-2, the above limits for all equipment except for Lightning equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

6.3.2. Test procedures

- **1.** The EUT was placed on the top of a wooden table 0.8 m above the ground and operated to produce the maximum harmonic components under normal operating conditions.
- 2. The classification of EUT is according to of EN 61000-3-2. The EUT is classified as follows: Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B: Portable tools; Arc welding equipment which is not professional equipment.

Class C: Lightning equipment.

Class D: Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors and television receivers.

 The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

6.3.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the test configuration.

6.3.4. Test results

The power consumption of EUT is less than 75W and no limits apply.

6.4. Voltage fluctuation and flicker measurement

6.4.1. Limit

TEST ITEM	LIMIT	REMARK
P _{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T _{dt} means maximum time that dt exceeds 3.3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

6.4.2. Test procedures

- 1. Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in EN 61000-3-3 depend on which standard adopted for compliance measurement.
- 2. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

6.4.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

6.4.4. Test results

Product Model:	V30Pro	Test Results	PASS
Observation Period (Tp)	10mins	Test Mode	Mode 1
Environmental Conditions	26°C,46% RH	Tested by	Su Dang
Test Date	2022/12/14		

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	RESULT
Pst	0.703	1.00	PASS
Plt	0.0305	0.65	PASS
Tdt (ms)	0	500	PASS
dmax (%)	0	4%	PASS
dc (%)	0	3.3%	PASS
dc (%)	0	3.3%	PASS

7. Immunity test

7.1. General description

Product	EN301489-1/3/17/19/52 EN55035					
Standard	Test Type	Minimum Requirement				
	EN61000-4-2 Electrostatic Discharge – ESD:	±2,4,8kV Air discharge, ±2,4kV Contact discharge, ±2,4kV HCP/VCP discharge Performance Criterion A				
	EN 61000-4-3: Radio frequency Electromagnetic Immunity Test	80MHz~6000MHz: 3V/m, 80% AM 1800MHz(±1%) 2600MHz(±1%) 3500MHz(±1%) 5000MHz(±1%) Modulated. Performance Criterion B				
Basic Standard, Specification, and Performance	EN 61000-4-4 Electrical Fast Transient/Burst – EFT:	Power Port: ±1 kV I/O Port: ±0.5 kV 5/50ns Tr/Th, 5KHz Repetition Freq Performance Criterion B				
required	EN 61000-4-5 Surge immunity test	Power port: Line to Line: ±1 kV Communication port: LAN port: Line to ground: ±0.5 kV Performance Criterion A				
	EN 61000-4-6 Conducted Radio Frequency Disturbances Test –CS:	0.15MHz ~ 80MHz, 3V(r.m.s), 80% AM Modulated, Performance Criterion A				
	EN55035/ EN 61000-4-6 Conducted Radio Frequency Disturbances Test –CS:	0.15~10MHz, 3V (r.m.s), 80% AM 10 ~30MHz, 3V to 1 V (r.m.s), 80% AM 30~80MHz 1V 80% AM Modulated, Performance Criterion A				

EN 61000-4-11	 Voltage Dips: i) >95% reduction for 0.5 cycle
Voltage dips, short	Performance Criterion B ii) >95% reduction for 1 cycle
interruptions and voltage	Performance Criterion B iii) 30% reduction for 25 cycles
variations immunity test–	Performance Criterion C Voltage Interruptions: >95% reduction for 250 cycles
Voltage Interruption/Dips:	Performance Criterion C

7.2. Performance of criteria

The performance of criteria about EN55035&EN301489-1/3/17/19/52

Criteria A:	The apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
	After test, the apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance.
Criteria B:	During the test, degradation of performance is however allowed. However, no change of operating state if stored data is allowed to persist after the test. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria C:	Temporary loss of function is allowed, provided the functions is self-recoverable or can be restored by the operation of controls by the user in accordance with the manufacturer instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

7.3. Electrostatic discharge immunity test(ESD)

Basic Standard	EN 61000-4-2
Discharge Impedance	330 ohm / 150 Pf
Discharge Valtege	Air Discharge: 2,4,8kV (Direct)
Discharge voltage	Contact Discharge: 2,4kV (Direct/Indirect)
Polarity	Positive & Negative
Number of Discharge	Minimum 25 times at each test point
Discharge Made	Single Discharge
Discharge wode	1 second minimum

7.3.1. Test specification

7.3.2. Test procedures

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

1. Contact discharge was applied to conductive surfaces and coupling planes of the EUT.

During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second. The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

- Vertical Coupling Plane (VCP): 2.
- 3. The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a
- Distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane. 4.
- 5. The four faces of the EUT will be performed with electrostatic discharge.
- Horizontal Coupling Plane (HCP): 6.

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a 7. distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four

faces of the EUT will be performed with electrostatic discharge.

- 8. Air discharges at insulation surfaces of the EUT.
- 9. It was at least ten single discharges with positive and negative at the same selected point.
- 10. For the actual test configuration, please refer to the related Item -EUT Test Photos

7.3.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration

7.3.4. Test results

Temperature	25.2°C	Humidity	46.6% RH
Pressure	101.01 kPa	Tested By	Su Dang
Test Mode	Mode 1	Required Passing Performance	Criterion A
Test Date	2022-01-18		

Air Discharge					
Test Delute Test Levels					Results
Test Points	± 2 kV	± 4 kV	± 8 kV	± 10 kV	PASS/ FAIL
port	В	В	В	1	PASS
LED	В	В	В	1	PASS
gap	В	В	В	1	PASS
Button	В	В	В	1	PASS

Discharge To Horizontal/Vertical Coupling Plane				
Side of	Side of Test Levels			Results
EUT	± 2 kV	± 4 kV	± 6 kV	PASS/ FAIL
Front	В	В	1	PASS
Back	В	В	1	PASS
Left	В	В	1	PASS
Right	В	В	1	PASS

Note: /.

7.4. Radio frequency electromagnetic immunity test(RS)

7.4.1. Test specification

Basic Standard	EN 61000-4-3
Frequency Range	80 MHz ~ 6 GHz(EN301489-1/3/17/19/52) 1.8 GHz,2.6 GHz,3.5 GHz, 5GHz for (EN55035)
	80 MHz ~ 6 GHz for EN 301489-1/3/17/19/52
Field Strength	3 V/m
Modulation 1kHz Sine Wave, 80%, AM Modulation	
Polarization of antenna	Horizontal and Vertical
Frequency Step	1 % of preceding frequency value
Dwell Time	at least 3 seconds

7.4.2. Test procedures

- 1. Test Level Refer to EN 55035 test method reference IEC/EN 61000-4-3 Section 8.
- The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive table 0.8 m in height. The system under test was connected to the power and signal wire according to relevant installation instructions.
- 3. The testing was performed in a modified semi-anechoic chamber.
- 4. The frequency range is swept from 80 MHz to 6000 MHz, with the signal 80% amplitude modulated with a 1kHz sine wave(For EN301489-1/-3/-17/-19/-52& EN55024).
- 5. The frequency range is swept from 1800 MHz, 2600 MHz, 3500 MHz and 5000 MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave (For EN55035).
- 6. The field strength level was 3 V/m.
- The test was performed with the EUT exposed to the vertical and horizontal polarization fields on the Back side.
- For 2.4GHz the exclusion band is 2280MHz ~2603.5MHz, for 5GHz the exclusion band is 4830MHz ~ 6000MHz.

7.4.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.4.4. Test results

Temperature	25.7°C	Humidity	45.1% RH
Pressure	/	Tested By	Su Dang
Test Mode	Mode 1	Required Passing Performance	Criterion A
Test Date	2022-12-15	•	

Frequency Band	Field Strength V/m	Observation Criterion	Result
80MHz-1GHz	3	А	PASS
1GHz-6GHz	3	А	PASS
1.8GHz	3	А	PASS
2.6GHz	3	А	PASS
3.5GHz	3	А	PASS
5GHz	3	А	PASS

Note: No performance degradation.

7.5. Electrical fast transient(EFT)

7.5.1. Test specification

Basic Standard	EN 61000-4-4
Test Voltage	AC Power Port: ±1 kV I/O Port: ±0.5 kV
Polarity	Positive & Negative
Impulse Frequency	5 kHz/100kHz
Impulse Wave-shape	5/50 ns
Burst Duration	15 ms/0.75ms
Burst Period	300 ms
Test Duration	Not less than 1 min.

7.5.2. Test procedures

- 1. Test method reference IEC/EN 61000-4-4 Section 8.
- 2. In order to minimize the effect of environmental parameters on test results, the climatic conditions when test is carrying out shall comply with the following requirements:
 - Ambient temperature: 15 °C to 35 °C.
 - Relative humidity: 45 % to 75 %.
 - Atmospheric pressure: 86 kPa (860 mbar) to 106 kPa (1060 mbar).
- 3. In order to minimize the effect of environmental parameters on test results, the electromagnetic environment of the laboratory shall not influence the test results.
- 4. The variety and diversity of equipment and systems to be tested make it difficult to establish general criteria for the evaluation of the effects of fast transients/bursts on equipment and systems.
- 5. The test results may be classified on the basic of the operating conditions and the functional specification of the equipment under test, according to the following performance criteria:
 - Normal performance within the specification limits.
 - -Temporary degradation or loss of function or performance which is self-recoverable.

-Temporary degradation or loss of function or performance which requires operator

intervention or system reset.

-Degradation or loss of function which is not recoverable due to damage of equipment

(components).

7.5.3. Test set-up

7.5.4. Test results

Temperature	26°C	Humidity	46% RH
Pressure	101.2 kPa	Tested By	Su Dang
Test Mode	Mode 1	Required Passing Performance	Criterion B
Test Date	2022-12-15		

Test Point	Test Level (Kv)	Observation Criterion	Result
L	±1	В	PASS
Ν	±1	В	PASS
L-N	±1	В	PASS

7.6. Surge immunity test

7.6.1. Test specification

Basic Standard	EN 61000-4-5	
Wave-Shape	Combination Wave 1.2/50 μs Open Circuit Voltage 8/20 μs Short Circuit Current	
Test Voltage	Power port: Line to line: ±1kV, Communication port: LAN port: Line to ground: ±0.5kV Performance Criterion B	
Generator Source Impedance	Power Line: 2 ohm between networks 12 ohm between network and ground Signal port: 40 ohm between network and ground	
Polarity	Positive/Negative	
Phase Angle	0° / 90° / 180° / 270°	
Pulse Repetition Rate	1 time / min. (maximum)	
Number of Tests	5 positive and 5 negative at selected points	

7.6.2. Test procedures

- 1. Test method reference IEC/EN 61000-4-5 Section 8
- 2. Climatic conditions

The climatic conditions shall comply with the following requirements:

- Ambient temperature : 15 °C to 35 °C
- Relative humidity: 10 % to 75 %
- Atmospheric pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar)
- 3. Electromagnetic conditions
 - The electromagnetic environment of the laboratory shall not influence the test results.
- The test shall be performed according the test plan that shall specify the test set-up with.
 If not otherwise specified the surges have to be applied synchronized to the voltage phase at the

zero-crossing and the peak value of the a.c. voltage wave (positive and negative).

5. The surges have to be applied line to line and line(s) and earth. When testing line to earth, the test voltage has to be applied successively between each of the lines and earth, if there is no

other specification.

- 6. The test procedure shall also consider the non-linear current-voltage characteristics of the equipment under test. Therefore the test voltage has to be increased by steps up to the test level specified in the product standard or test plan.
- 7. If the actual operating signal sources are not available, the may be simulated. Under no circumstances may the test level exceed the product specification. The test shall be carried out according the a test plan.
- 8. To find all critical points of the duty cycle of the equipment, a sufficient number of positive and negative test pulses shall be applied. For acceptance test a previously unstressed equipment shall be used to the protection devices shall be replaced.

7.6.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.6.4. Test Results

Temperature	26°C	Humidity	45% RH
Pressure	101.2 kPa	Tested By	Su Dang
Test Mode	Mode 1	Required Passing Performance	Criterion B
Test Date	2022-12-16		

AC Port(1.2/50 us+8/20 us)					
Test Coupling Network		Bhasa Angla	Test Level (kV)		Booult
Point	(Ohm)	Fildse Aligie	±1	±4	Result
L-N	2	0° / 90° / 180° / 270°	В	/	PASS

7.7. Conducted radio frequency disturbances (CS)

7.7.1. Test specification

Basic Standard	IEC 61000-4-6/EN301489-1/3/17/19/52
Frequency Range	0.15 MHz ~ 80 MHz
Field Strength	3 V(r.m.s)
Modulation	1kHz Sine Wave, 80%, AM Modulation
Frequency Step	1 % of preceding frequency value
Dwell Time	at least 3 seconds

Basic Standard	IEC 61000-4-6/EN55035
Frequency Range	0.15 MHz ~ 80 MHz
Field Strength	0.15MHz ~ 80MHz 3V 10 MHz ~ 30MHz 3V to 1V 30MHz ~ 80MHz 1V
Modulation	1kHz Sine Wave, 80%, AM Modulation
Frequency Step	1 % of preceding frequency value
Dwell Time	at least 3 seconds

7.7.2. Test procedures

- Test Level Refer to EN 55035, EN 301489-1, test method reference IEC/EN
 61000-4-6 Section 8.
- 2 The EUT shall be operated within its intended climatic conditions. The temperature and relative humidity should be recorded.
- 3 The test shall be performed with the test generator connected to each of the coupling and decoupling.
- 4 Devices in turn while the other non-excited RF-input ports of the coupling devices are terminated by a 50 ohm load resistor.
- 5 The frequency range is swept from 150 kHz to 80 MHz, using the signal levels established during the setting process, and with the disturbance signal 80% amplitude modulated with a 1 kHz sine wave, pausing to adjust the RF-signal level or to switch

coupling devices as necessary. The rate of sweep shall no exceed 1.5 x 10-3 decades/s. Where the frequency is swept incrementally, the step size shall no exceed 1% of the start and thereafter 1% of the preceding frequency value.

- 6 The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies e.g. clock frequency (ies) and harmonics or frequencies of dominant interest shall be analyzed separately.
- 7 In cases of dispute, the test procedure using a step size not exceeding 1% of the start and thereafter 1% of preceding frequency value shall take precedence.
- 8 Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.
- 9 The use of special exercising programs is recommended.
- 10 Testing shall be performed according to a Test Plan, which shall be included in the test report.
- 11 It may be necessary to carry out some investigatory testing in order to establish some aspects of the test plan.
- 12 For xDSL network function test During the swept frequency test, the established connection shall be maintained throughout the testing and the information transferred without any additional reproducible errors or loss of synchronisation. If degradation in performance is observed and the system is adaptive, for example has the capability to automatically retrain in the presence of an interfering signal, then perform the following procedure:
 - a) For each range of interfering frequencies in which degradation in performance is observed, three frequencies (beginning, middle and end) shall be identified.
 - b) At each of the frequencies identified in step a), the interfering signal shall be applied and the system shall be allowed to retrain.
 - c) If the system is able to retrain and then functions correctly for a dwell time of at least 60
 s

Without any additional reproducible errors or loss of synchronisation, then the performance level of the system is considered acceptable.

d) The frequencies identified in step a) and the data rates achieved in step b) shall be recorded in the test report.

7.7.3. Test set-up

Schematic setup for immunity test used for CDN

Schematic setup for immunity test used for injection clamp

 T
 Termination 50 Ω

 T2
 Power attenuator (6 dB)

 CDN
 Coupling and decoupling network

 Injection clamp:
 Current clamp or EM clamp

Schematic setup for immunity test to RF conducted disturbances

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.7.4. Test results

Temperature	25.6°C	Humidity	46% RH
Pressure	/	Tested By	Su Dang
Test Mode	Mode 1	Required Passing Performance	Criterion A
Test Date	2022-12-16		

Frequency Band (MHz)	Field Strength V	Cable	Observation Criterion	Result
0.15~80	3	AC Port	A	PASS

Note: No performance degradation.

Temperature	25.6°C	Humidity	56.7% RH
Pressure	/	Tested By	Su Dang
Test Mode	Mode 1	Required Passing Performance	Criterion A
Test Date	2022-12-16		

Frequency Band (MHz)	Field Strength V(r.m.s)	Cable	Observation Criterion	Result
0.15~10	3			
10~30	3~1	AC Port	A	PASS
30~80	1			

Note: No performance degradation.

7.8. Voltage dips and Voltage interruption

7.8.1. Test specification

Basic Standard:	IEC 61000-4-11/EN301489-1/3/17/19/52	
Test duration time:	Minimum three test events in sequence	
Interval between event:	Minimum 10 seconds	
Phase Angle:	0° / 180°	
Test cycle:	3 times	

7.8.2. Test procedures

- 1. Test Level Refer to EN 55035, EN 55024 test method reference IEC/EN 61000-4-11 Section 8.
- 2. Source voltage and frequency: 230V/50 Hz, Single phase.
- 3. Test of interval: 10 secs.
- 4. Level and duration: Sequency of 3 dips/interrupts.
- 5. Voltage rise (and fall) time: $1 \sim 5 \mu s$.

7.8.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration

7.8.4. Test results

Temperature	25.6°C	Humidity	44% RH
Pressure	/	Tested By	Su Dang
Test Mode	Mode 1	Required Passing Performance	Criterion B/B/B/C
Test Date	2022-12-19		

Test Voltage; 230V,50Hz			
Voltage (%Residual)	Duration (Period)	Observation Criterion	Result
0	0.5 Cycle	А	PASS
0	1 Cycle	A	PASS
70	25 Cycles	С	PASS
0	250 Cycles	С	PASS

Note:

- 1. Performance criterion B Test a small amount of packet loss, returned to normal after the test.
- 2. Performance criterion C Restart during the test and resume normal work after the test.

8. Appendix-A Test photographs

RE Below 1GHz

RE Above 1GHz

CE

ESD

RS

Report No.: CE2022-06453E

EFT

SURGE

Report No.: CE2022-06453E

CS

DIPS

9. Appendix-B Photographs of EUT

STATEMENT

- 1. It is invalid if the report has no Inspection Seal.
- 2. It is invalid that the copy one is not sealed again.
- 3. It is invalid if the report has no signature or seal of tester, auditor, or approver.
- 4. It is invalid if the report is altered.
- 5. Objections to this report should be submitted to the inspection organization in 15 days of receipting the report. It is not accepted if overdue.
- 6. The test report is valid for above tested sample only.
- 7. Partial replica is prohibited without permission.
- 8. \Rightarrow is indicated that the item is without the scope of CNAS,CMA,CAL

Accredited Testing.

9. Forge, tamper the report, the organization will be liable for any legal liability incurred here from.

Address: 101, 3 # Factory Building, Gongjin Electronics, Shatin Community, Kengzi Street, Pingshan District, Shenzhen City,Guangdong province China

Tel: 0755-27087573

Fax: 0755-27087573

ZipCode:518118

E-mail: liuhaitao@tirt.com.cn

Web Sites: http://www.tirt.com.cn

(END OF REPORT)