

TEST REPORT

Report No	: ZHT-221010001E
Product	: Power assisted electric bicycle
Trademark	HappyRun
Model(s)	: HR-G50
Applicant	: Shenzhen Happyrun Intelligent Technology Co.,Ltd.
Address	. 3F, Building A, Runfa Tech Park, NO.25, Mudun Road, First Industry Park, Lou Cun, Gongming, Guangming, Shenzhen, China
Manufacturer	: Shenzhen Happyrun Intelligent Technology Co.,Ltd.
Address	. 3F, Building A, Runfa Tech Park, NO.25, Mudun Road, First Industry Park, Lou Cun, Gongming, Guangming, Shenzhen, China
Prepared by	: Guangdong Zhonghan Testing Technology Co., Ltd.
Address	: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Date of Receipt	: Oct. 09, 2022
Date of Test(s)	: Oct. 09, 2022 - Oct. 14, 2022
Date of Issue Test Standard(s)	: Oct. 14, 2022 : EN IEC 55014-1:2021 EN IEC 55014-2:2021 EN IEC 61000-3-2:2019 EN 61000-3-3:2013+A1:2019

In the configuration tested, the EUT complied with the standards specified above.

Tested by:

Eric Jiang

Eric Jiang/ Engineer

Reviewed by:

Baret Wu/ Director

Note: The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report shall not be reproduced except in full, without prior written approval of ZHT. This document may be altered or revised by ZHT, personnel only, and shall be noted in the revision of the document.

🖂 admin@zht-lab.cn,

🕖 🌐 http://www.zht-lab.cn

Report No.: ZHT-221010001E Page 2 of 43

Table of Contents

1. Revision History	3
2. Test Summary	
3. General Information	5
3.1. Description of EUT	5
3.2. Test conditions	5
3.3. Block diagram of EUT configuration	5
3.4. Test Mode	6
3.5. Test Site Environment	7
4. Facilities	
4.1. Test Facility	
4.2. Test Instruments	
4.3. Measurement uncertainty	
5. Emission	
5.1. Conducted Emission	
5.2. Disturbance POWER EMISSION test	14
5.3. Radiated emissions	16
5.4. Harmonic current emissions	
5.5. Voltage changes, voltage fluctuations and flicker	
6. Immunity	
6.1. Electrostatic discharges	24
6.2. Radio-frequency electromagnetic field	
6.3. Electrical fast transients/burst	
6.4. Surges	
6.5. Conducted Susceptibility	
6.6. Voltage dips and Short interruptions	35
7. Photographs of EUT	
8. Test Setup Photographs	

Report No.: ZHT-221010001E Page 3 of 43

1. Revision History

Report No.	Issue Date	Description	Approved
ZHT-221010001E	Oct. 13, 2022	Original	Valid
	15	115	

2. Test Summary

	Emission		
Requirement - Test	Test Method	Limit	Result
Conducted Emission	EN IEC 55014-1:2021	Class B	PASS
Radiated Emission	EN IEC 55014-1:2021	Class B	PASS
	Immunity		
Requirement - Test	Test Method	Performance criteria	Result
Electrostatic discharges	EN 61000-4-2:2009	В	PASS
Electromagnetic field	EN 61000-4-3:2020	A	PASS
Electrical fast transients/burst	EN 61000-4-4:2012	В	PASS
Surges	EN 61000-4-5:2014	В	PASS
Conducted RF	EN 61000-4-6:2014	A	PASS
Voltage dips and Short interruptions	EN 61000-4-11:2020	C & C & C	PASS

Harmonic current emissionsEN IEC 61000-3-2:2019Class APASSVoltage changes, voltage fluctuations and flickerEN 61000-3-3:2013+A1:2019Clause 5PASS	and the second se	and the second se		
EN 61000-3-3 2013+A1 2019 Clause 5 PASS	Harmonic current emissions	EN IEC 61000-3-2:2019	Class A	PASS
	Voltage changes, voltage fluctuations and flicker	EN 61000-3-3:2013+A1:2019	Clause 5	PASS

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn, 🔷 🌐 http://www.zht-lab.cn

Page 5 of 43

3. General Information

3.1. Description of FUT

Product:	Power assisted electric bicycle	
Model Name:	HR-G50	
Model Difference:	15	
Rated Power Supply:	Input: AC 100-240V, 50/60Hz, 2A	
Normal Testing Voltage:	AC 230V/50Hz, AC 110V/60Hz	
DC Line	Short than 3m	
I/O Ports	Refer to User Manual	
Highest Frequency Generated	Below108 MHz	

3.2. Description of Adapter

Product:	Li-ion Charger
Model Name:	JY-546200
Model Difference:	
Rated Power Supply:	Input: AC 100-240V, 50/60Hz, 2A
	Output: 54.6V === 2A
Normal Testing Voltage:	AC 230V/50Hz, AC 110V/60Hz
DC Line	Short than 3m
I/O Ports	Refer to User Manual
Highest Frequency Generated	Below108 MHz

Note:

1. Other Accessory Device List and Details

Description	Manufacturer	Model	Note

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.3. Test conditions

Temperature: 15-35℃ Relative Humidity: 30-60 % Atmospheric pressure: 800hPa-1060hPa

3.4. Block diagram of EUT configuration

AC Mains EUT

🖂 admin@zht-lab.cn,

http://www.zht-lab.cn

Report No.: ZHT-221010001E Page 6 of 43

3.5. Test Mode

Conducted Emission	Charging mode
Radiated Emission	Charging mode, Working mode
Harmonic current emissions	Charging mode
Voltage changes, voltage fluctuations and flicker	Charging mode
Electrostatic discharges	Charging mode, Working mode
Electromagnetic field	Charging mode, Working mode
Electrical fast transients/burst	Charging mode
Surges	Charging mode
Conducted Susceptibility	Charging mode
Voltage dips and Short interruptions	Charging mode

* Only the worst-case data is represented in the report.

Report No.: ZHT-221010001E Page 7 of 43

3.6. Test Site Environment

Test Item	Required (IEC 6	0068-1)	Actual
	Temperature (°C)	15-35	24.7
Conducted Emission	Humidity (%RH)	25-75	54.6
	Barometric pressure (mbar)	860-1060	1014
	Temperature (°C)	15-35	23.6
Radiated Emission	Humidity (%RH)	25-75	54.1
	Barometric pressure (mbar)	860-1060	1014
	Temperature (°C)		23.6
Harmonic Current Emissions	Humidity (%RH)	-	54.2
	Barometric pressure (mbar)	-	1014
	Temperature (°C)		23.6
Voltage Fluctuations & Flicker	Humidity (%RH)		54.2
	Barometric pressure (mbar)		1014
	Temperature (°C)	15-35	24.2
ESD	Humidity (%RH)	30-60	53.6
	Barometric pressure (mbar)	860-1060	1014
	Temperature (°C)	15-35	24.0
RS	Humidity (%RH)	30-60	54.3
	Barometric pressure (mbar)	860-1060	1014
	Temperature (°C)	15-35	24.0
EFT	Humidity (%RH)	30-60	54.3
	Barometric pressure (mbar)	860-1060	1014
	Temperature (°C)	15-35	24.0
Surge	Humidity (%RH)	10-75	54.3
	Barometric pressure (mbar)	860-1060	1014
	Temperature (°C)		24.0
CS	Humidity (%RH)	-	54.3
	Barometric pressure (mbar)	- 0	1014
	Temperature (°C)	15-35	24.0
Voltage Dips & Voltage Variations	Humidity (%RH)	25-75	54.3
	Barometric pressure (mbar)	860-1060	1014

4. Facilities

4.1. Test Facility

Test address 1: Guangdong Zhonghan Testing Technology Co., Ltd. Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Report No.: ZHT-221010001E

Page 8 of 43

Test address 2: Eurofins Electrical Testing Service (Shenzhen) Co., Ltd.

1st Floor, Spring Block , MeiShengHuiGu Innovation Park ,

No 83. Dabao Rd, Xin'an Community, Bao'an District,

Shenzhen City, Guangdong Province, China 518133

4.2. Test Instruments

Conducted emissions Test

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESCI	Apr. 27, 2022	Apr. 26, 2023
LISN	R&S	ENV216	Apr. 27, 2022	Apr. 26, 2023

Radiated emissions Test (966 chamber)

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESPI 7	Apr. 27, 2022	Apr. 26, 2023
Amplifier	Schwarzbeck	BBV 9743 B	Apr. 27, 2022	Apr. 26, 2023
Amplifier	Schwarzbeck	BBV 9718 B	Apr. 27, 2022	Apr. 26, 2023
TRILOG Broadband Antenna	schwarzbeck	VULB9162	Apr. 27, 2022	Apr. 26, 2023
Horn Antenna	schwarzbeck	BBHA9120D	Apr. 27, 2022	Apr. 26, 2023

Harmonic / Flicker Test

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Power Analyzer	Li	AC2000A	Apr. 27, 2022	Apr. 26, 2023
Power Analyzer	Li	HPHF4010	Apr. 27, 2022	Apr. 26, 2023

Electrostatic discharge immunity Test

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
ESD TEST	HTEC	HESD16	Apr. 27, 2022	Apr. 26, 2023
Generator		RESUIT	Αμι. 21, 2022	Apr. 20, 2023

Report No.: ZHT-221010001E Page 9 of 43

EFT and Surge and Voltage dips and interruptions Test

Equipment	Manufacturer	Model	Last Cal.	Next Cal.	
Surge Generator	HTEC	HCOMPACT5/H V1P6T	Apr. 27, 2022	Apr. 26, 2023	
DIPS Generator	HTEC	HCOMPACT5/H V1P6T	Apr. 27, 2022	Apr. 26, 2023	
EFT/B Generator	HTEC	HCOMPACT5/H V1P6T	Apr. 27, 2022	Apr. 26, 2023	
EFT/B Clamp	HTEC	НЗС	Apr. 27, 2022	Apr. 26, 2023	

Conducted Susceptibility disturbances Test

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Signal Generator	Schwarzbeck	CDG 7000-25	Apr. 27, 2022	Apr. 26, 2023
Attenuator	Schwarzbeck	6db	Apr. 27, 2022	Apr. 26, 2023
CDN	Schwarzbeck	CDN M2+M3-16A	Apr. 27, 2022	Apr. 26, 2023

Radio-frequency electromagnetic field

Equipment	Manufacturer	Model No.	Last Cal.	Cal. Interval
Signal Generator	Agilent	N517113-50B	Nov. 06, 2021	1Year
Amplifier	A&R	50SIG6M1	Oct. 09, 2021	1Year
Log-periodic Antenna	SCHWARZBECK	STLP 9128E	Jan. 19, 2022	1 Year
Isotropic Field Probe	A&R	FL7006	Jul. 01, 2021	1 Year
Microwave log-periodic antenna	SCHWARZBECK	STLP9149	Dec. 15, 2021	1 Year

4.3. Measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission (150kHz-30MHz)	2.60
Radiated Emission(30MHz~1GHz)	4.60
Radiated Emission(1GHz~6GHz)	4.30

Decision Rule

 \boxtimes Uncertainty is not included

Uncertainty is included

5. Emission

Report No.: ZHT-221010001E

Page 10 of 43

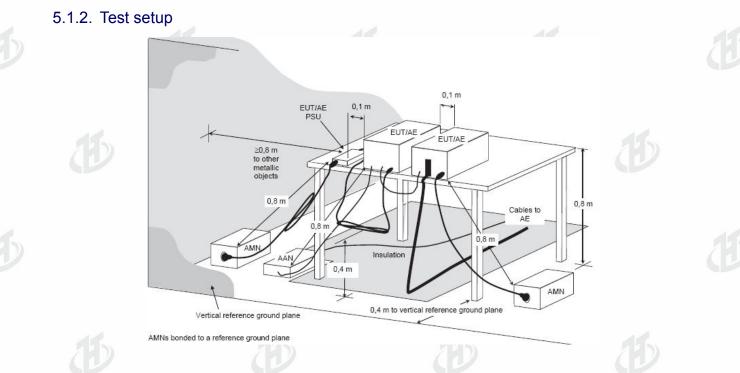
5.1.Conducted Emission

5.1.1. Limit

Disturbance voltage limits for induction cooking appliances

Frequency range	Appliances which are 1000 without an earth conn		All other appliances				
	dBµV	dBµV	dBµV	dBµV			
MHz	Quasi-peak	Average	Quasi-peak	Average			
0,009 to 0,050	122		110	-			
	Decreasing linearly with		Decreasing linearly with				
0,050 to 0,150	logarithm of frequency from	-	logarithm of frequency from	-			
	102 to 92		90 to 80				
0.150 to 0.5	Decreasing linearly with logarithm of frequency from						
0,150 to 0,5	72 to 62	60 to 52	66 to 56	56 to 46			
0,5 to 5	56	46	56	46			
5 to 30	60	50	60	50			
The lower limit app	blies at the transition frequencies.						

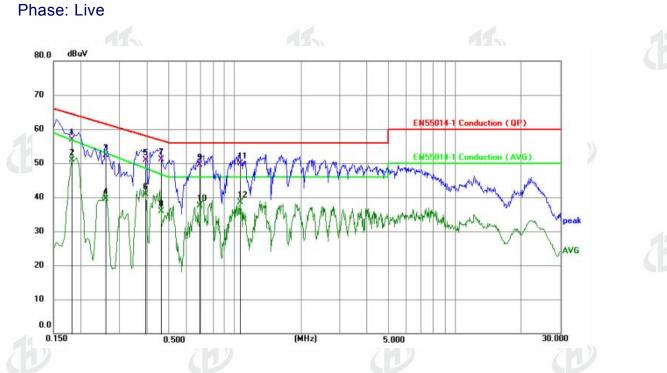
General limits


	1 10 10				1 2 1 1		
Frequency	Mains ports		Associated ports				
range	Disturban	ce voltage	Disturban	ce voltage	Disturbance current		
MHz	Quasi-peak	Average	Quasi-peak	Average	Quasi-peak	Average	
	dBµV	dBµV	dBµV	dBµV	dBµA	dBµA	
	Decreasing	linearly with			Decreasing	linearly with	
	the			th	e		
0,15 to 0,50	logai	logarithm 80 of the frequency from:	80	70	logai	rithm	
	of the frequ		om:		of the frequ	ency from:	
	66 to 56	59 to 46			40 to 30	30 to 20	
0,50 to 5	56	46	74	64	20	20	
5 to 30	60 50		74	64	- 30 20		
	applies at the t						
The test report	t shall state which	ch test method v	vas used and wh	ich limits were	applied.		

Limits for mains port of tools

Frequency range	P ≤ 7	00 W	700 W < P	≤ 1 000 W	P > 1 000 W		
MHz	Quasi-peak Average dBµV dBµV		Quasi-peak dBµV	Average dBµV	Quasi-peak dBµV	Average dBµV	
0.15 to 0.25		Decreasing line	early with the log	garithm of the f	frequency from:		
0,15 to 0,35	66 to 59 59 to 49		70 to 63	63 to 53	76 to 69	69 to 59	
0,35 to 5	59	49	63	53	69	59	
5 to 30	64	54	68	58	74	64	
The lower limit applies at the transition frequencies. Key							
P = rated powe	er of the motor of	nly.					

5.1.3. Test procedure


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The test results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak(mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater. Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

5.1.4. Test results

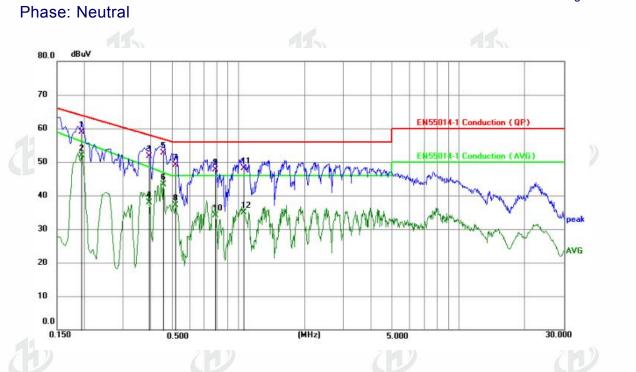
PASS Please refer to the following page.

Report No.: ZHT-221010001E Page 12 of 43

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1814	47.04	9.90	56.94	64.42	-7.48	QP	Р	
2	0.1814	40.97	9.90	50.87	56.95	-6.08	AVG	P	
3	0.2580	42.44	9.93	52.37	61.50	-9.13	QP	Р	
4	0.2580	29.60	9.93	39.53	53.14	<mark>-13.61</mark>	AVG	P	
5	0.3930	40.85	9.99	50.84	58.00	-7.16	QP	P	
6	0.3930	30.96	9.99	40.95	48.60	-7.65	AVG	P	
7 *	0.4605	41.08	10.01	51.09	56.68	-5.59	QP	P	
8	0.4605	25.86	10.01	35.87	46.89	-11.02	AVG	P	
9	0.6945	39.38	10.04	49.42	56.00	-6.58	QP	Р	
10	0.6945	27.50	10.04	37.54	46.00	-8.46	AVG	P	
11	1.0544	39.80	10.06	49.86	56.00	-6.14	QP	Р	
12	1.0544	28.53	10.06	38.59	46.00	-7.41	AVG	P	

Ð

B



🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn, 📝 🏐 http://www.zht-lab.cn

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1949	49.01	9.91	58.92	63.83	-4.91	QP	Р	
2	0.1949	42.09	9.91	52.00	56.17	-4.17	AVG	P	
3	0.3930	41.64	9.99	51.63	58.00	-6.37	QP	Р	
4	0.3930	27.96	9.99	37.95	48.60	-10.65	AVG	P	
5	0.4560	42.70	10.01	52.71	56.77	-4.06	QP	P	
6 *	0.4560	33.21	10.01	43.22	46.99	-3.77	AVG	P	
7	0.5190	39.06	10.02	49.08	56.00	-6.92	QP	P	
8	0.5190	27.17	10.02	37.19	46.00	-8.81	AVG	P	
9	0.7842	37.63	10.04	47.67	56.00	-8.33	QP	Р	
10	0.7842	24.03	10.04	34.07	46.00	-11.93	AVG	P	
11	1.0544	38.11	10.06	48.17	56.00	-7.83	QP	P	
12	1.0544	24.82	10.06	34.88	46.00	-11.12	AVG	Р	

Note: Level=Reading + Factor Margin=Level – Limit

	T	æ	Ð		æ
ZH	ONGHAN			Report No.:	ZHT-221010001E Page 14 of 43
	5.2. Disturbance	POWER EMISSION test			-
	5.2.1. Limit	Table A)	B	Æ
		Equipment type	Frequency range		dB(pW))
			(MHz)	Quasi-peak	Average
		Household and similar appliances	30 to 300	45 to 55	35 to 45
		Note: If the limit for the measuremer with a quasi-peak detector, the equip the measurement using the receiver Table B	oment under test sha	all be deemed to n	neet both limits and
		Equipment type	Frequency range	Limits(c	dB(pW))
			(MHz)	Quasi-peak	Average
		Household and similar appliances	200 to 300	0 to 10 dB	
	5.2.2. Test setup	B de)	B	Æ
	B	Absorbing clamp	measurement cab	Slide	
	0.8m ↓	Ground Reference Plane	6.0m	clamp slide iver Mair	ns connection

light http://www.zht-lab.cn 🖂 admin@zht-lab.cn, **2** 0755-27782934

Ground Reference Plane

5.2.3. Test procedure

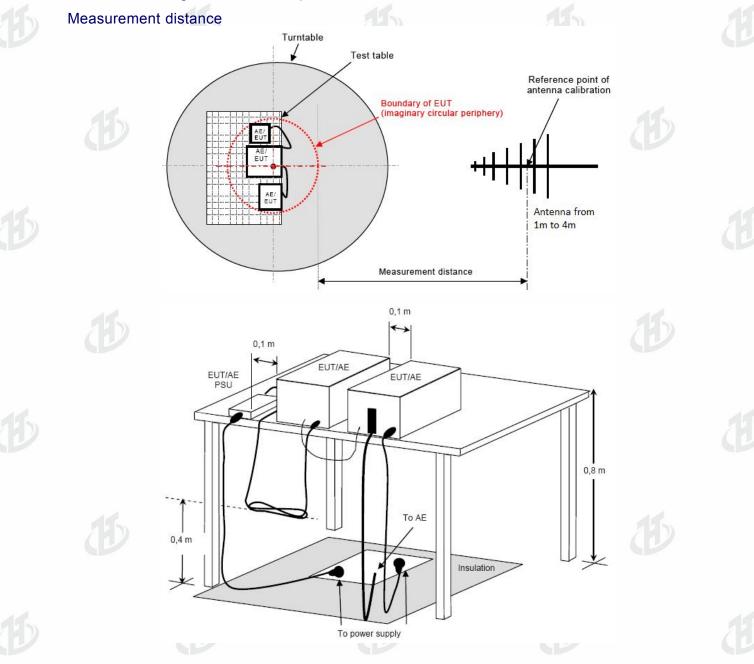
The E.U.T. was placed on the 0.8 m high table and away from other metallic surface at least 0.8m. It is connected to the power mains through an extension cord of 6m min. The absorber clamp clamps the cord and moves from the far end to the E.U.T. to measure the disturbing energy emitted from the cord.

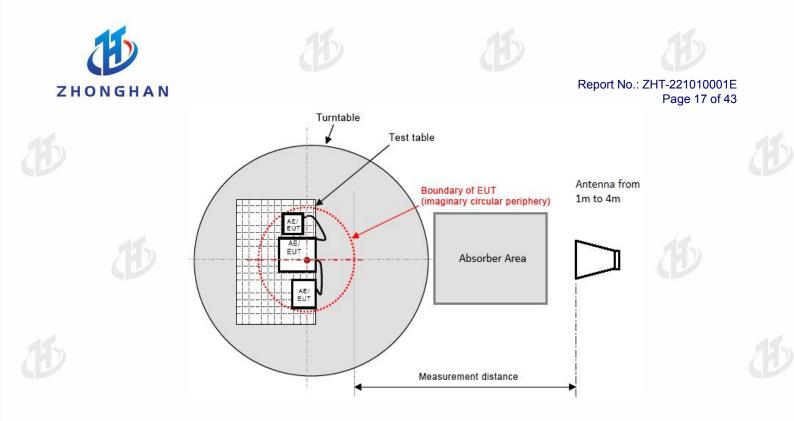
5.2.4. Test results

Remark:

The radiation method was used for testing, See Chapter 5.3 for details.

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn, 📝 🏐 http://www.zht-lab.cn




5.3. Radiated emissions

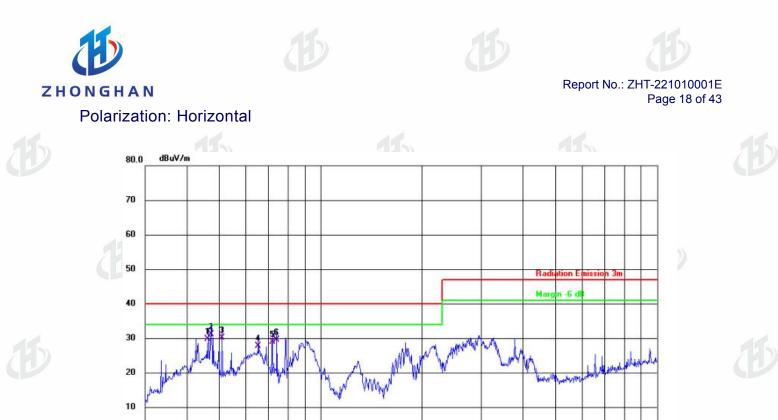
- 5.3.1. Limit
- Table 2 Radiated disturbance limits and testing methods 30 MHz to 1 000 MHz

Frequency (MHz)	Quasi-peak limits at 3m dB(µV/m)	
30-230	40	
230-1000	47	

5.3.2. Block diagram of test setup

5.3.3. Test procedure

5.3.4. Test results


Please refer to the following page.

PASS

1 0755-27782934

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from 1 meter to 4 meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1GHz.

🖂 admin@zht-lab.cn, 🚺 🌐 http://www.zht-lab.cn

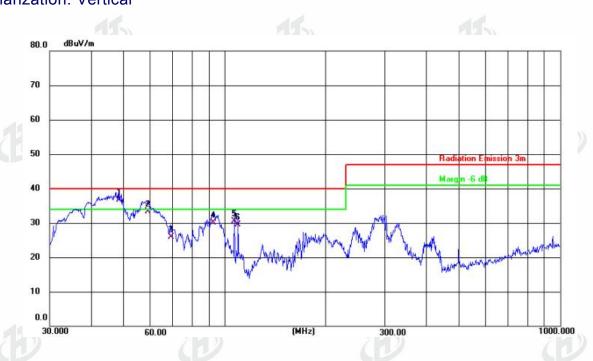
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	46.1779	44.53	-14.89	29.64	40.00	-10.36	QP			P	
2 *	47.1598	45.92	-14.79	31.13	40.00	-8.87	QP			P	
3	50.7636	44.73	-14.63	30.10	40.00	-9.90	QP			P	
4	65.1144	45.12	-17.34	27.78	40.00	-12.22	QP		1	P	
5	71.5805	48.15	-19.19	28.96	40.00	-11.04	QP			Р	
6	73.8756	49.11	-19.63	29.48	40.00	-10.52	QP			P	

(MHz)

300.00

1000.000

0.0


60.00

Report No.: ZHT-221010001E Page 19 of 43

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	48.3316	51.43	-14 .69	36.74	40.00	-3.26	QP		1	P	
2	58.8185	48.94	-15.58	33.36	40.00	-6.64	QP			Р	
3	69.1140	44.51	-18.62	25.89	40.00	-14.11	QP			P	
4	92.4624	48.28	-18.11	30.17	40.00	-9.83	QP			Р	
5	106.7587	48.00	-17.42	30.58	40.00	-9.42	QP			P	
6	109.4116	47.23	-17.70	29.53	40.00	-10.47	QP			P	

Note: Level=Reading + Factor Margin=Level – Limit

5.4. Harmonic current emissions

5.4.1. Test Setup

Harmonic & flicker test system

EUT

5.4.2. Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and the EUT is supplied in series with power analyzer from a power source having the same normal voltage and frequency as the rated supply voltage and the equipment under test. And the rated voltage at the supply voltage of EUT of 0.94 times and 1.06 times shall be performed.

A definition of the normal load or of the conditions for adequate heat discharge can usually be found in the EN publication corresponding to the equipment under test.

Equipment may have several separately controlled circuits. Each circuit is considered as a single piece of equipment if it can be operated independently and separately from the other circuits.

5.4.3. Limit

Class A Harmonics Currents

	Harmonics Order	Maximum Permissible harmonic current	Harmonics Order	Maximum Permissible harmonic current	
	n	(A)	n	(A)	
	Odd ha	irmonics	Even ha	armonics	
4	3	2.30	2	1.08	
	5	1.14	4	0.43	
	7	0.77	6	0.30	
	9	0.40	$8 \le n \le 40$	0.23 * 8/n	
	11	0.33	12		
	13	0.21	C.		
	$15 \le n \le 39$	0.15 * 15/n			

Class B Harmonics Currents

For Class B equipment, the harmonic of the input current shall not exceed the maximum permissible values given in table which is the limit of Class A multiplied by a factor of 1.5.

Page 21 of 43

Class C Harmonics Currents

Harmonics Order		Maximum Permissible harmonic current Expressed as a percentage of the input current at the fundamental							
n		(%)							
2		2							
3		30. λ*							
5		10							
7		7							
9		5							
$11 \le n \le 39$ (odd harmonics		3							
$*\lambda$ is the circuit p	$\star \lambda$ is the circuit power factor								

Class D Harmonics Currents

Harmonics Order	Maximum Permissible harmonic	Maximum Permissible
	current per watt	harmonic current
n	(mA/W)	(A)
3	3.4	2.30
5	1.9	1.14
7	1.0	0.77
9	0.5	0.40
11	0.35	0.33
$11 \le n \le 39$	3.85/n	See limit of Class A
(odd harmonics	0.00/11	

5.4.4. Test Result PASS

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn, 🖉 🏐 http://www.zht-lab.cn

5.5. Voltage changes, voltage fluctuations and flicker

5.5.1. Test Setup

Harmonic & flicker test system

EUT

5.5.2. Test Procedure

The EUT is supplied in series with power analyzer from a power source having the same normal voltage and frequency as the rated supply voltage and the equipment under test. And the rated voltage at the supply voltage of EUT of 0.94 times and 1.06 times shall be performed. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.

During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

5.5.3. Limit

	Test Item	Limit
	Pst (Short-term flicker indicator.)	1.0
	Plt (Long-term flicker indicator.)	0.65
Td(t)(ms) (Maximum time that d(t) exceeds 3.3%)	500
dı	max(%) (Maximum relative voltage change.)	4
d	c(%) (Relative steady-state voltage change)	3.3

5.5.4. Test Result

PASS

The EUT is unlikely to produce significant voltage fluctuations or flicker by technical analysis and eval uation. So it is deemed to fulfil the requirements without testing.

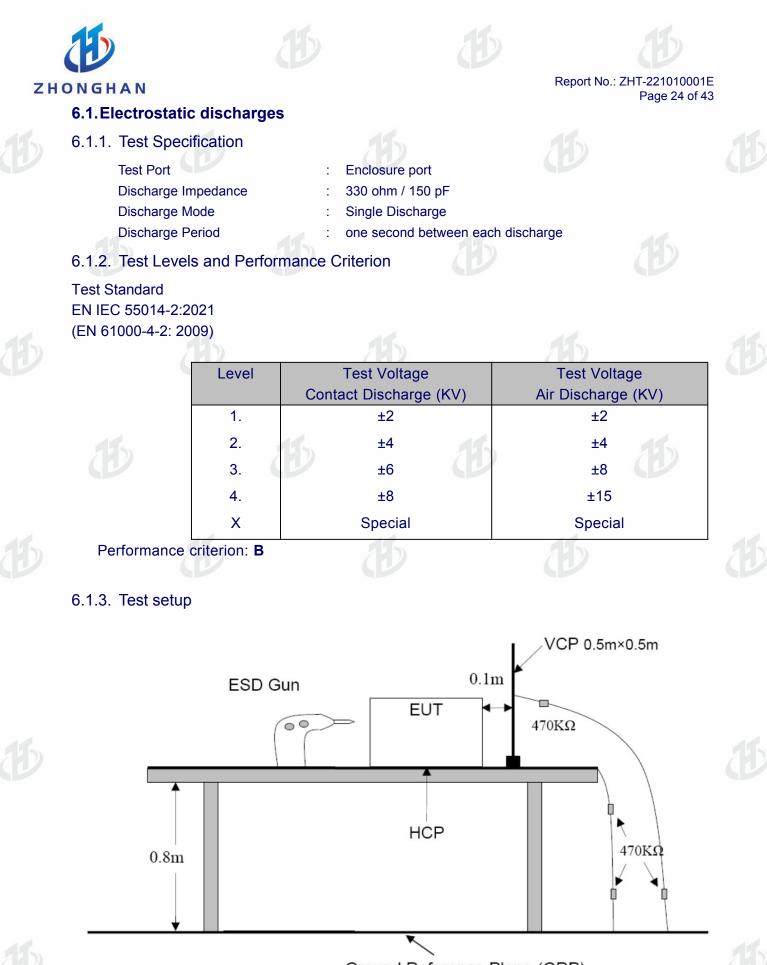
6. Immunity

Performance criteria

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss function is allowed below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Report No.: ZHT-221010001E


Page 23 of 43

Performance criterion **B**

The equipment shall continue to operate as intended after the test. No degradation of performance or loss function is allowed below a performance level specified by the manufacturer, when the equipment is used as intended. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from equipment if used as intended.

Performance criterion C

Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by operation of the controls.

Ground Reference Plane (GRP)

6.1.4. Test Procedure

Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the E.U.T.. After each discharge, the discharge electrode shall be removed from the E.U.T.. The generator is then re-triggered for a new single discharge and repeated (10 of each polarity) for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

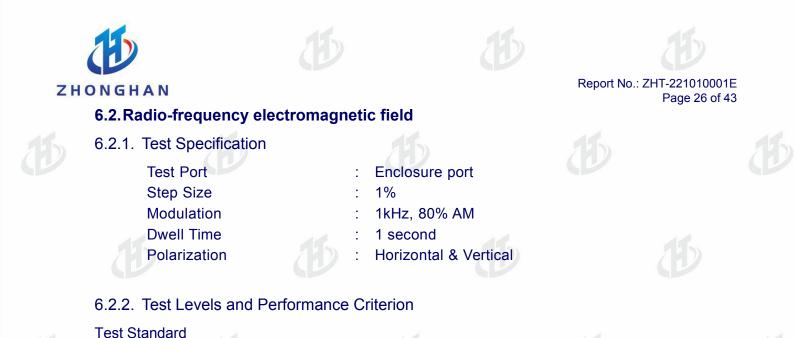
Contact Discharge:

All the procedure shall be same as Section Air Discharge except that the tip of the discharge electrode shall touch the E.U.T..

Indirect discharge for horizontal coupling plane:

At least 10 single discharges(in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit(if applicable) of the E.U.T. and 0.1m from the front of the E.U.T.. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

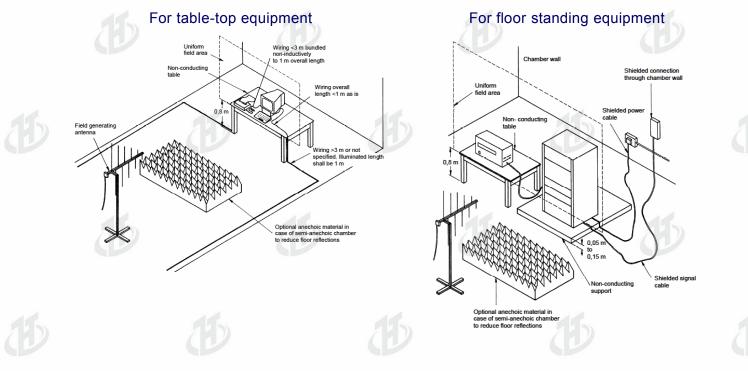
Indirect discharge for vertical coupling plane:


At least 10 single discharge (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the E.U.T.. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the E.U.T. are completely illuminated.

6.1.5. Test Result

PASS

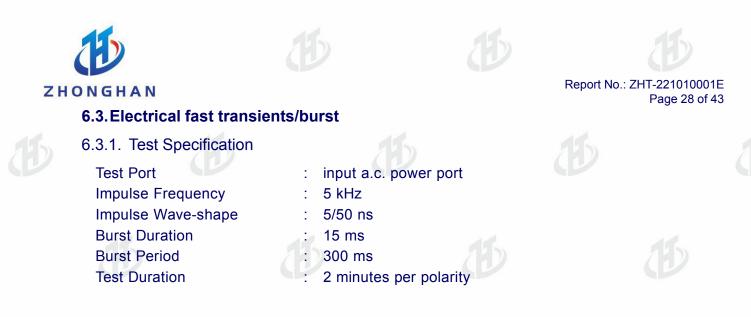
Please refer to the following page.


Test Point	Kind A-Air Discharge C-Contact Discharge	Performance Criterion	Result (Performance Criterion)	æ
Metal	С	□A ⊠B	A	
Surface of EUT	A	□A ⊠B	A	
Indirect Discharge (HCP)	С	□A ⊠B	A	
Indirect Discharge (VCP)	С	□A ⊠B	A	

EN IEC 55014-2:2021 (EN 61000-4-3:2020) Characteristics Test levels Frequency range 80 MHz to 1 000 MHz, Test level 3 V/m (unmodulated) Modulation 1 kHz, 80 % AM, sine wave

Performance criterion: A

6.2.3. Test setup


6.2.4. Test Procedure

Measurement was performed in full-anechoic chamber. Measurement procedure was applied according to EN 61000-4-3 clause 8. The test method and equipment was specified by EN 61000-4-3.

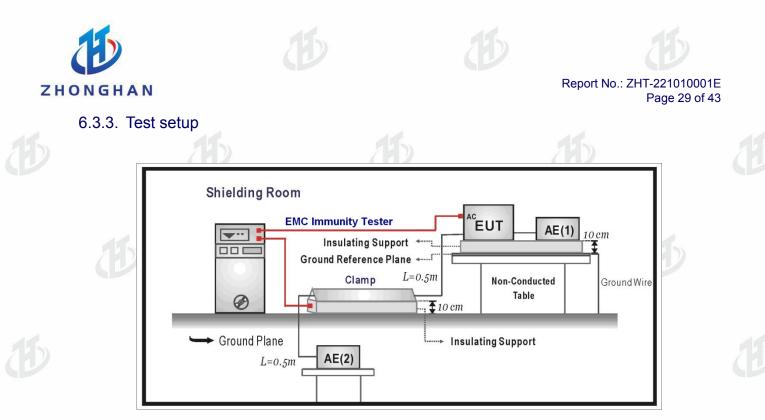
6.2.5. Test Result

		_	-
	Λ	~	~
-	-	_	_
			С.
		_	

	uency Hz)	Polarization	Test level (V/m)	Modulation	Exposed location	Result (Performance Criterion)
80-1	000	H & V	3	1 kHz, 80% AM, 1 % increment	All sides	A

6.3.2. Test Levels and Performance Criterion

Test Standard EN IEC 55014-2:2021 (EN 61000-4-4: 2012)


	Open circuit output test voltage and repetition rate of the impulses										
	On power	⁻ port, PE	t, PE On I/O (Input/Output) Sig								
Level	Voltage peak	Repetition rate	Voltage peak	Repetition rate							
	KV	KHz	KV	KHz							
1.	0.5	5 or 100	0.25	5 or 100							
2.	1.0	5 or 100	0.5	5 or 100							
3.	2.0	5 or 100	1.0	5 or 100							
4.	4.0	5 or 100	2.0	5 or 100							
X	Special	Special	Special	Special							

Note 1 Use of 5 KHz repetition rates is traditional; however, 100 KHz is closer to reality. Product committees should determine which frequencies are relevant for specific products or product types.

Note 2 With some products, there may be no clear distinction, between power ports and I/O ports, in which case it is up to product committees to make this determination for test purposes.

Note 3 "X" is an open level. The level has to be specified in the dedicated equipment specification.

Performance criterion: B

6.3.4. Test Procedure

The E.U.T. is put on the table which is 0.8 meter high above the ground. This reference ground plane shall project beyond the E.U.T. by at least 0.1m on all sides and the minimum distance between E.U.T. and all other conductive structure, except the ground plane beneath the E.U.T., shall be more than 0.5m.

For input and output AC power ports:

The E.U.T. is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minus.

For signal lines ports:

The E.U.T. is connected to the power mains by using a coupling device which couples the EFT interference signal to Signal lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minus.

For DC ports:

It's unnecessary to test.

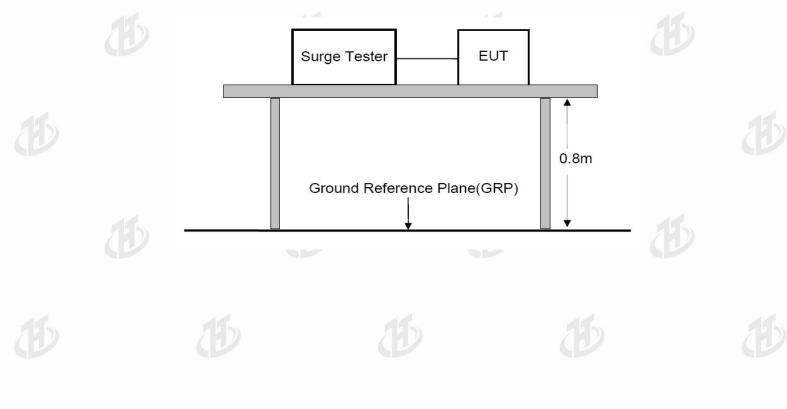
6.3.5. Test Result

	1.1.1					
Test Point	Polarity	Test Level	Inject Time	Inject	Performance	Result
Test Point	Folanty	(kV)	(Second)	Method	Criterion	(Performance Criterion)
L	±	1	60	Direct	□A ⊠B	А
N	±	1	60	Direct	□A ⊠B	A
PE	±	1 5	60	Direct	□A ⊠B	N/A
L+N	±	1	60	Direct	□A ⊠B	A
L+PE	±	1	60	Direct	□A ⊠B	N/A
N+PE	±	1	60	Direct	□A ⊠B	N/A
L+N+PE	±	1	60	Direct	□A ⊠B	N/A

Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test Criterion B: Operate as intended after the test Criterion C: Loss/Error of function

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn, 🖉 🌐 http://www.zht-lab.cn


ZH	ONGHAN			Report No.: ZHT-221010001E Page 31 of 43	
	6.4.Surges				
	6.4.1. Test Specification Test Port Wave-Shape Pulse Repetition Rate	:	input a.c. power port Open Circuit Voltage - 1.2 / Short Circuit Current - 8 / 20 1 pulse / min.		
	Phase Angle Test Events	Ð	90° / 270° 5 pulses (positive & negativ	re) for each polarity	

6.4.2. Test Levels and Performance Criterion

Test Standard EN IEC 55014-2:2021 (EN 61000-4-5: 2014)

10	Severity Level	Open-Circuit Test VoltageKV		
7 7) [1	0.5		
	2	1.0		
Γ	3	2.0		
Γ	4	4.0		
Γ	16 · 16	Special		
Perform	nance criterion: B			

6.4.3. Test setup

Report No.: ZHT-221010001E Page 32 of 43

6.4.4. Test Procedure

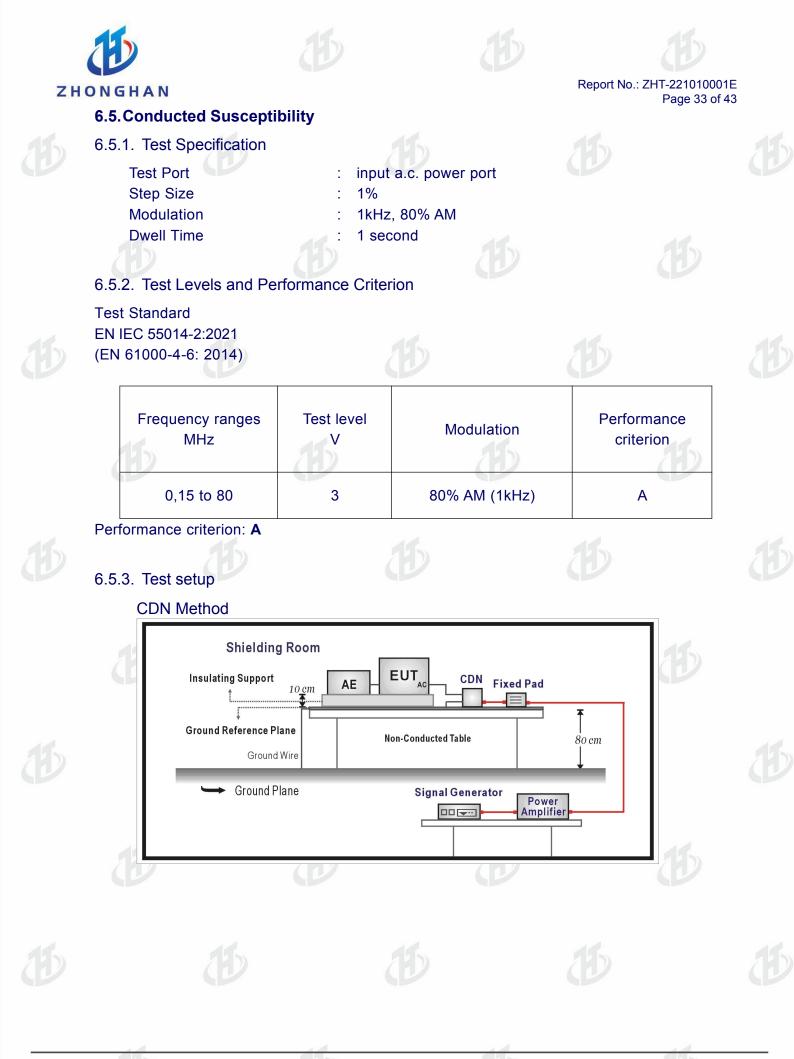
1. Set up the E.U.T. and test generator as shown on Section 12.1.

2. For line to line coupling mode, provide a 1.0KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to E.U.T. selected points.

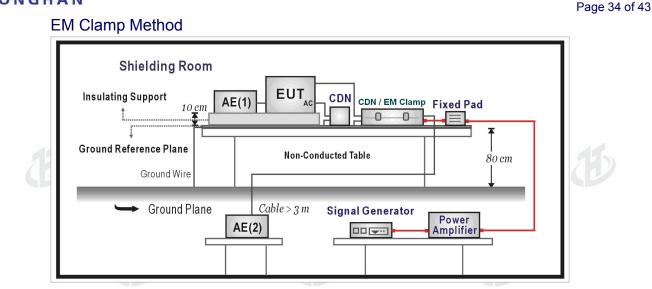
3. Five positive pulses Line-to-neutral at 90°phase, Five negative pulses Line-to-neutral at 270°phase. with a maximum 1/min repetition rate are conducted during test.

4. Different phase angles are done individually.

5. Record the E.U.T. operating situation during compliance test and decide the E.U.T. immunity criterion for above each test.


6.4.5.	Test	Result

			1				
Angle: Positive pul			sitive pulses at 9	90° phase	, Negati	ive puls	ses at 270° phase
Inject	Polarity	Voltage	Time Interval		Perform		Result
Line	Tolarity	(kV)	(Second)	Method	Crite	rion	(Performance Criterion)
L-N	±	1	60	Direct	A	⊠B	А
L-PE	ŧ	2	60	Direct		⊠B	N/A
N-PE	±	2	60	Direct	A	⊠B	N/A


Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test Criterion B: Operate as intended after the test Criterion C: Loss/Error of function

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn, 📝 🏐 http://www.zht-lab.cn

6.5.4. Test Procedure

1. Set up the E.U.T., CDN and test generators as shown on Section 5.6.1.

2. Let the E.U.T. work in test mode and measure it.

3. The E.U.T. are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from E.U.T.. Cables between CDN and E.U.T. are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

4. The disturbance signal described below is injected to E.U.T. through CDN.

5. The E.U.T. operates within its operational mode(s) under intended climatic conditions after power on.

6. The frequency range is swept from 150 KHz to 80 MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave.

7. The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

8. Recording the E.U.T. operating situation during compliance testing and decide the E.U.T. immunity criterion.

6.5.5. Test Result

Frequency Band (MHz)	Field Strength (Vrms)	Inject Port	Inject Method	Performance Criterion	Result (Performance Criterion)
0.15 ~ 80	3	AC Mains	CDN-M2	ADB	AL

Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test

Criterion C: Loss/Error of function

Note 2: The display quality of a display output was evaluated by using a subjective by direct observation.

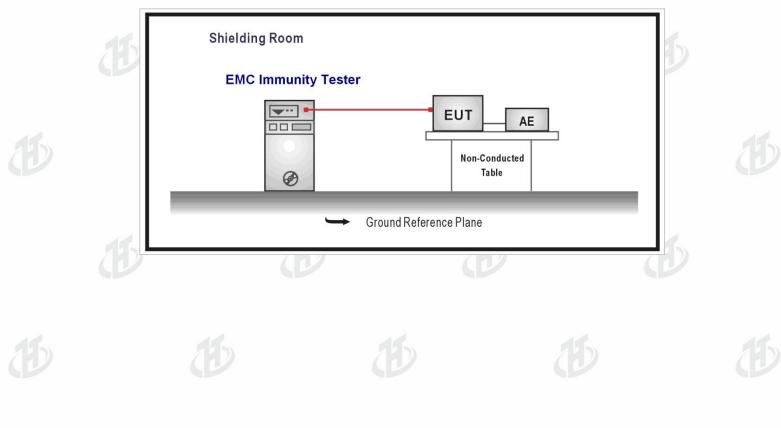
Report No.: ZHT-221010001E

Report No.: ZHT-221010001E Page 35 of 43

6.6. Voltage dips and Short interruptions

6.6.1. Test Specification

Test Port	
Phase Angle	
Test cycle	


- input a.c. power port
- : 0°, 180° : 3 times

6.6.2. Test Levels and Performance Criterion

Test Standard EN IEC 55014-2:2021 (EN 61000-4-11: 2020)

	Test Level	Voltage dip and short	Duration	
	%UT	interruptions	(in period)	
		%UT		
	0	100	0.5	2
	40	60	10	
	70	30	25	
P	Performance criterion: C, C, C	15	15	

6.6.3. Test setup

6.6.4. Test Procedure

The Section of EN 61000-4 defines the immunity test methods and range of preferred test levels for electrical and electronic equipment connected to low-voltage power supply networks for voltage dips. Short interruptions and voltage variations. The standard applies to electrical and electronic equipment having a rated input current not exceeding 16A per phase. It does not apply to electrical and electronic equipment for connection to D.C networks or 400Hz A.C networks. Test for these networks will be covered by future EN standard. A performance criterion is classified as A, B, C, the recommendation is criterion A or B.

The test shall be performed with the EUT connected to the test generator with the shortest power supply cable as specified by EUT manufacturer. If no cable length is specified, it shall be the shortest possible length suitable to the application of the EUT.

The test set-up for the two types of phenomena described in this standard are:

- Voltage dips and short interruptions;

- Voltage variations with gradual transition between the rated voltage and the changed voltage (Option)

Both tests may be implemented with this set-up. Test on the three-phase EUT are accomplished by using three set of equipment mutually synchronized.

The EUT shall be tested for each selected combination of test level and duration with a sequence of three Dip / interruption with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested.

Test Voltage (Vac)	Voltage Residual	Test Duration (Periods)	Performance Criterion	Result (Performance Criterion)
	0	0.5		В
230	40	10		C
	70	25		С

6.6.5. Test Result

Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test

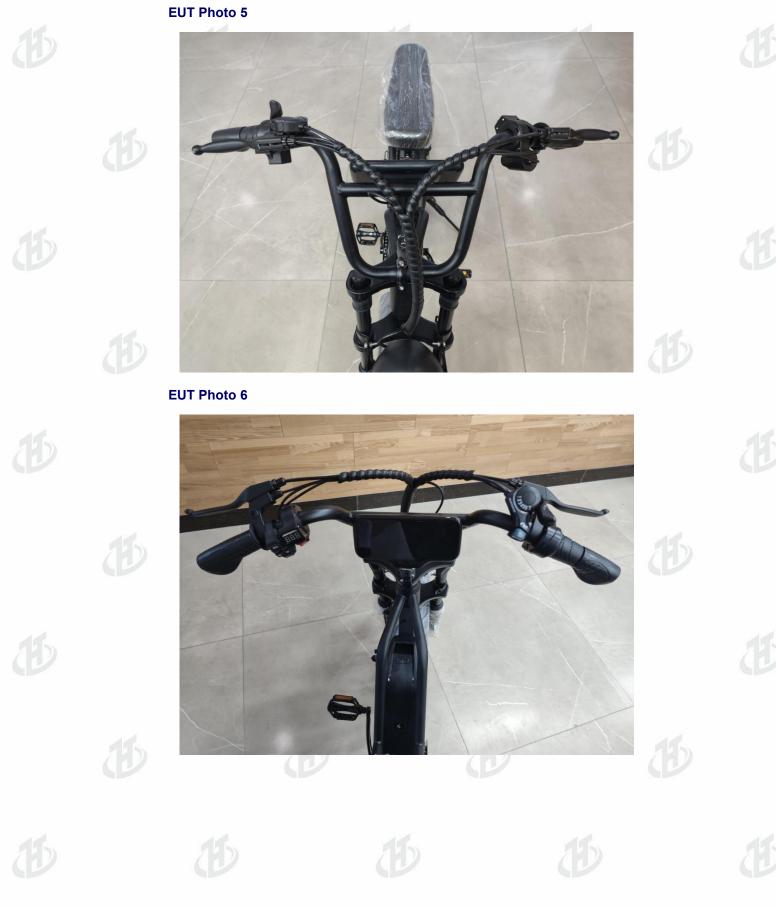
Criterion B: Operate as intended after the test

Criterion C: Loss/Error of function

Note2: The power is temporary off and can be reset by the operator.

EUT Photo 2

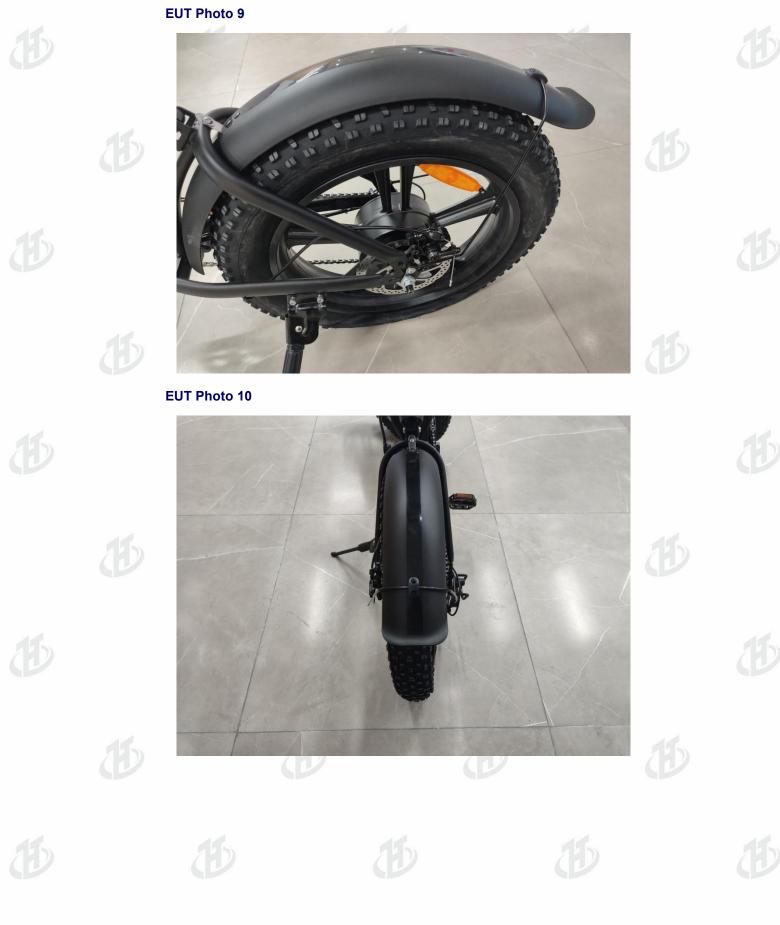
EUT Photo 4



Report No.: ZHT-221010001E Page 39 of 43

EUT Photo 7

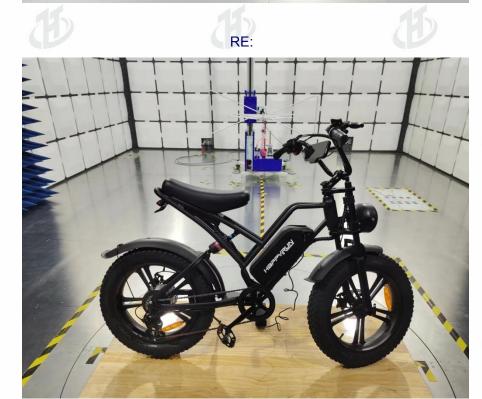
EUT Photo 8



Report No.: ZHT-221010001E Page 42 of 43

EUT Photo 11

🌐 http://www.zht-lab.cn 2 0755-27782934 🖂 admin@zht-lab.cn, 🗇



End of report