

ETS	TEST REPORT I EN 300 328 V2.2.2 (2019-07)				
Report Reference No	HTT202012207E-2				
Compiled by (position+printed name+signature):	Jack Chen Tack Chen				
Supervised by (position+printed name+signature):	Owen Hu	Oven Hu			
Approved by (position+printed name+signature):	Kevin Yang	Jack Chen Droen Hu Kein Young LECANNOG			
Date of issue	Dec.18,2020				
Testing Laboratory Name	Shenzhen HTT Technology Co., L	td.			
Address	1F, B Building, Huafeng Internatio Gushu, Xixiang Street, Bao'an Dis				
Applicant's name	Dong guan jin qi Technology CO.	LTD			
Address	4 th Floor, Building B, Building 5, Jewelry City Cultural Industrial Park, No.568, Huanchang North Road, Changping Town, Dongguan, Guangdong				
Test specification:					
Standard	ETSI EN 300 328 V2.2.2 (2019-07)				
Shenzhen HTT Technology Co., Ltd.	-				
This publication may be reproduced in Shenzhen HTT Technology Co., Ltd. is Shenzhen HTT Technology Co., Ltd. ta resulting from the reader's interpretation	s acknowledged as copyright owner a akes no responsibility for and will not	nd source of the material. assume liability for damages			
Test item description	Bluetooth Keyboard				
Trade Mark	КРН				
Manufacturer:	Dong guan jin qi Technology CO.,LTD 4 th Floor, Building B, Building 5, Jewelry City Cultural Industrial Park, No.568, Huanchang North Road, Changping Town, Dongguan, Guangdong				
Model/Type reference	KPH-030				
Serial Model	KPH-A56, KPH-A58, KPH-Z15, KPH-Z09, KPH-Z23, KPH-Z24, KPH-Z18, KPH-Z19, KPH-Z20				
Ratings	Charge input: DC 5V,0.5A Battery: DC 3.7V, 1500mAh				
Result	PASS				

Page 2 of 36

TEST REPORT

Test Report No. :		HTT202012207E-2	Dec.18,2020
Equipment under Test	:	Bluetooth Keyboard	
Model Name	:	KPH-030	
Serial Model	:	KPH-A56, KPH-A58, KPH-Z15, K KPH-Z18, KPH-Z19, KPH-Z20	PH-Z09, KPH-Z23, KPH-Z24,
Trade Mark	:	КРН	
Applicant	:	Dong guan jin qi Technology CO.,L	TD
Address	:	4 th Floor, Building B, Building 5, Jev Park, No.568, Huanchang North Ro Dongguan, Guangdong	
Manufacturer	:	Dong guan jin qi Technology CO.,L	
Address	:	4 th Floor, Building B, Building 5, Jev Park, No.568, Huanchang North Ro Dongguan, Guangdong	

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 36

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	
2.3. Equipment Under Test	
2.4. EUT Classification:	
2.5. Modifications	
3. TEST ENVIRONMENT	7
3.1. Address of the test laboratory	
3.2. Environmental conditions	
3.3. Test Description	
3.4. Statement of the measurement uncertainty	
3.5. Equipments Used during the Test	
4. TEST CONDITIONS AND RESULTS	11
4.1. ETSI EN 300 328 REQUIREMENTS	11
4.1.1. RF Output Power	
4.1.2. Duty Cycle,TX-sequence,TX-gap	
4.1.3. Medium Utilisation (MU) factor	
4.1.4. Power Spectral Density	
4.1.5. Adaptivity	
4.1.6. Occupied Channel Bandwidth	
4.1.7. Transmitter unwanted emissions in the out-of-band domain	
4.1.8. Transmitter unwanted emissions in the spurious domain	
4.1.9. Receiver spurious emissions	
4.1.10. Receiver Blocking	
5. PHOTOS OF THE EUT	36
<u>9. FIIOTOS OF THE EUT</u>	

Page 4 of 36

1. TEST STANDARDS

The tests were performed according to following standards:

ETSI EN 300 328 V2.2.2 (2019-07)–Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band; Harmonised Standard for access to radio spectrum

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample		Dec.14,2020
Testing commenced on	:	Dec.14,2020
Testing concluded on	:	Dec.18,2020

2.2. Product Description

Product Name:	Bluetooth Keyboard
Model:	KPH-030
Serial Model:	KPH-A56, KPH-A58, KPH-Z15, KPH-Z09, KPH-Z23, KPH-Z24, KPH-Z18, KPH-Z19, KPH-Z20
Trade Mark:	КРН
Frequency range:	For Bluetooth:2402 MHz-2480 MHz
Channel Number:	For Bluetooth: 40
Type of Modulation:	For Bluetooth: GFSK
Power Supply:	Charge input: DC 5V,0.5A
	Battery: DC 3.7V, 1500mAh

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
			Other :DC 3.7V		

Description of the test mode

Bluetooth 4.0 used 40 channels and channel separation was 2MHz

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470

Page 6 of 36

15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

2.4. EUT Classification:

\boxtimes	stand alone equipment
	plug in radio equipment
	combined equipment
\boxtimes	Wide Band Modulation (None Hopping – e.g. DSSS, OFDM)
	Frequency Hopping Spread Spectrum (FHSS)
\boxtimes	Yes, LBT-based
	Yes, non-LBT-based
	Yes (but can be disabled)
	No
	Operating mode 1 (single antenna)
	Equipment with 1 antenna,
	Equipment with 2 diversity antennas operating in switched
\boxtimes	diversity mode by which at any moment in time only 1 antenna is
	used,
	Smart antenna system with 2 or more transmit/receive chains, but
	operating in a mode where only 1 transmit/receive chain is used)
	Operating mode 2 (multiple antennas, no beamforming)
	Equipment operating in this mode contains a smart antenna
	system using two or more transmit/receive chains simultaneously
	but without beamforming.
	Operating mode 3 (multiple antennas, with beamforming)
	Equipment operating in this mode contains a smart antenna
	system using two or more transmit/receive chains simultaneously
	with beamforming. In addition to the antenna assembly gain (G),
	the beamforming gain (Y) may have to be taken into account
	when performing the measurements.

2.5. Modifications

No modifications were implemented to meet testing criteria.

Page 7 of 36

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen HTT Technology Co., Ltd.

1F, B Building, Huafeng International Robotics Industrial Park, Gushu, Xixiang Street, Bao'an District, Shenzhen

3.2. Environmental conditions

Normal Temperature: 25 °C High Temperature: 40 °C Low Temperature: -20 °C Normal Voltage : DC 3.70V Relative Humidity: 55 % Air Pressure: 989 hPa

3.3. Test Description

3.4.1 Main Terms

Verdict Test Case Verdict of each test cases. Test cases identification number and description in 3GPP test specification and ETSI specification.

3.4.4 Summary of measurement results

\boxtimes

No deviations from the technical specifications were ascertained There were deviations from the technical specifications ascertained

Test Specificati on Clause	Test Case	Test Condition	Mode	Pass	Fail	N/A	NP	Remark
	RF output	NTC						
5.4.2	power	LT	GFSK					
5.4.3	Power Spectral Density	HT NTC	GFSK					
5.4.2	Duty Cycle, Tx- sequence, Tx- gap	NTC	GFSK					
5.4.2	Medium Utilisation (MU) factor	NTC	GFSK			\boxtimes		
5.4.6	Adaptivity (adaptive equipment using modulations other than FHSS)	NTC	GFSK					
5.4.7	Occupied Channel Bandwidth	NTC	GFSK					
	Transmitter	NTC						
5.4.8	unwanted emissions in the out-of-band	LT HT	GFSK					

Page 8 of 36

	domain					
5.4.9	Transmitter unwanted emissions in the spurious domain (conducted & radiated)	NTC	GFSK	\boxtimes		
5.3.10	Receiver spurious emissions (conducted & radiated)	NTC	GFSK	\boxtimes		
5.4.11	Receiver Blocking	NTC	GFSK	\boxtimes		

Remark: The measurement uncertainty is not included in the test result.

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency error	25 Hz	(1)
Frequency range	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Adjacent and alternate channel power Conducted	1.20 dB	(1)
Conducted spurious emission	1.60 dB	(1)
Radiated spurious emission	2.20 dB	(1)
Intermodulation attenuation	1.00 dB	(1)
Maximum useable receiver sensitivity	2.80 dB	(1)
Co-channel rejection	2.80 dB	(1)
Adjacent channel selectivity	2.80 dB	(1)
Spurious response rejection	2.80 dB	(1)
Intermodulation response rejection	2.80 dB	(1)
Blcking or desensitization	2.80 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Equipments Used during the Test

R	RF output power&PSD&OOB&OBW &Hoping &Duty Cycle, Tx-sequence, Tx-gap&Adaptively& ReceiverBlocking						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date	
1	Spectrum Analyzer	Agilent	N9020A	MY48010425	2020/06/10	2021/06/09	
2	Vector Signal generator	Agilent	N5181A	MY49060502	2020/06/10	2021/06/09	
3	Signal generator	Agilent	E4421B	3610AO1069	2020/06/10	2021/06/09	
4	4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW53323507	2020/06/10	2021/06/09	
5	X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY5365004	2020/06/10	2021/06/09	
6	Climate Chamber	ESPEC	EL-10KA	A20120523	2020/06/10	2021/06/09	
7	Universal Radio Communication	Rohde&Schw arz	CMU200	114353	2020/06/10	2021/06/09	
8	Wireless Commnunication Tester	Rohde&Schw arz	CMW500	125408	2020/06/10	2021/06/09	
9	Test Control Unit	Tonscend	JS0806-1	178060067	2020/06/10	2021/06/09	
10	Automated filter bank	Tonscend	JS0806-F	19F8060177	2020/06/10	2021/06/09	
11	EMI Test software	Tonscend	JS1120-1	Ver 2.6.8.0518	1	1	
12	EMI Test software	Tonscend	JS1120-3	Ver 2.5.77.0418	1	/	

Page 10 of 36

	Transmitter spurious emissions & Receiver spurious emissions							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date		
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI 7	101102	2020/06/10	2021/06/09		
2	Spectrum Analyzer	Agilent	N9020A	MY480 10425	2020/06/10	2021/06/09		
3	Spectrum Analyzer	R&S	FSV40	100019	2020/06/10	2021/06/09		
4	By-log Antenna	SCHWARZBECK	VULB9163	000976	2020/06/10	2021/06/09		
5	Double Ridged Horn Antenna (1~18GHz)	SCHWARZBECK	BBHA 9120D	01622	2020/06/10	2021/06/09		
6	Horn Antenna (18GHz~40GHz)	Schwarzbeck	BBHA9170	791	2020/06/10	2021/06/09		
7	Amplifier (30MHz~1GHz)	Schwarzbeck	BBV 9743	#202	2020/06/10	2021/06/09		
8	Amplifier (1GHz~18GHz)	Taiwan Chengyi	EMC051845 B	980355	2020/06/10	2021/06/09		
9	Amplifier (26.5GHz~40GHz)	Schwarzbeck	BBV9179	9719- 025	2020/06/10	2021/06/09		
10	High-Pass Filter	K&L	9SH10- 2700/X1275 0-O/O	KL1420 31	2020/06/10	2021/06/09		
11	High-Pass Filter	K&L	41H10- 1375/U1275 0-O/O	KL1420 32	2020/06/10	2021/06/09		
12	RF Cable	HUBER+SUHNER	RG214	N/A	2020/06/10	2021/06/09		
13	EMI Test software	Tonscend	JS32-RE	Ver 2.5.1.8	1	1		

The calibration interval is 1 year.

4. TEST CONDITIONS AND RESULTS

4.1. ETSI EN 300 328 REQUIREMENTS

4.1.1. RF Output Power

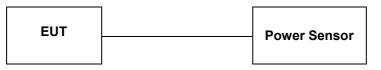
LIMIT

ETSI EN 300 328 Sub-clause 4.3.2.2

For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm.

The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier.

This limit shall apply for any combination of power level and intended antenna assembly.


The measurements for RF output power shall be performed at both normal environmental conditions and at the extremes of the operating temperature range.

The equipment shall be operated under its worse case configuration (modulation, bandwidth, power, etc.) with respect to the requirement being tested. Measurement of multiple data sets may be required.

For systems using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For systems using wide band modulations other than FHSS, the measurement shall be performed at the lowest, the middle, and the highest channel on which the equipment can operate. These frequencies shall be recorded.

TEST CONFIGURATION

TEST PROCEDURE

Please refer to ETSI EN 300 328 Sub-clause 5.4.3.2.1

Step 1:

- Use a fast power sensor suitable for 2.4 GHz and capable of 1 MS/s.
- Use the following settings:
- Sample speed 1 MS/s or faster.

The samples must represent the power of the signal.

Measurement duration: For non-adaptive equipment: equal to the observation period defined in clauses 4.3.1.3.2or 4.3.2.4.2. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) are captured.

NOTE 1: For adaptive equipment, to increase the measurement accuracy, a higher number of bursts may be used.

Step 2:

• For conducted measurements on devices with one transmit chain:

Connect the power sensor to the transmit port, sample the transmit signal and store the raw data.Use these stored samples in all following steps.

• For conducted measurements on devices with multiple transmit chains:

Connect one power sensor to each transmit port for a synchronous measurement on all transmit ports. Trigger the power sensors so that they start sampling at the same time. Make sure the time difference between the samples of all sensors is less than half the time between two samples.

For each instant in time, sum the power of the individual samples of all ports and store them. Use these stored samples in all following steps.

Step 3:

• Find the start and stop times of each burst in the stored measurement samples.

NOTE 2: The start and stop times are defined as the points where the power is at least 20 dB below the RMS burst power calculated in step 4.

Step 4:

• Between the start and stop times of each individual burst calculate the RMS power over the burst. Save these Pburst values, as well as the start and stop times for each burst.

Step 5:

- The highest of all Pburst values (value "A" in dBm) will be used for maximum e.i.r.p. calculations.
- Step 6:
- Add the (stated) antenna assembly gain "G" in dBi of the individual antenna.
- If applicable, add the additional beamforming gain "Y" in dB.
- If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.
- The RF Output Power (P) shall be calculated using the formula below:

P = A + G + Y

• This value, which shall comply with the limit given in clauses 4.3.1.2.3 or 4.3.2.2.3, shall be recorded in the test report.

EUT DESCRIPTION:

Mode:	BT Test mode
Test Channel	Channel 00(2402MHz), Channel 19(2440MHz), Channel 39(2480MHz)
Modulation:	GFSK

MEASUREMENT DESCRIPTION

Instrument:	Power Meter measuring burst Power(RMS) of a least 10 packets		
Performed:	\square	Conducted	
Penonnea.		Radiated (only if no conducted sample is provided)	

TEST RESULTS

Modulatio	Modulation: GFSK		Test Frequency: 2402 MHz			
Antenna Gai	Antenna Gain: 0.00 dBi		Test Method: Conducted			
Test environmental		Maximum conducted Burst Power in 15 measured Bursts (RMS) [dBm]				
Temperature (℃)	Voltage(V)	Antenna Measured Power (dBm)	Antenna Gain(dBi)	EIRP(dBm)		
T Nor (25℃)	3.70	1.84	0.00	1.84		
T min (-20℃)	3.70	1.67	0.00	1.67		
T Max(+40℃)	3.70	1.80	0.00	1.80		
Result		Pass				
Lim	Limit		20dBm			

Note :1. Measured Power include the cable loss.

Modulatio	Modulation: GFSK		equency: 2440 MHz		
Antenna Gain: 0.00 dBi		Test Method: Conducted			
Test environmental		Maximum conducted Burst Power in 15 measured Bursts (RMS) [dBm]			
Temperature (℃)	Voltage(V)	Antenna Measured Power (dBm)	Antenna Gain(dBi)	EIRP(dBm)	
T Nor (25℃)	3.70	1.25	0.00	1.25	
T min (-20℃)	3.70	1.17	0.00	1.17	
T Max (+40℃)	3.70	1.19	0.00	1.19	
Result			Pass		
Limit			20dBm		

Note :1. Measured Power include the cable loss.

Page 13 of 36

Modulatio	on: GFSK	Test Fr	Test Frequency: 2480 MHz			
Antenna Ga	Antenna Gain: 0.00 dBi		Test Method: Conducted			
Test environmental		Maximum conducted Burst Power in 15 measured Bursts (RMS) [dBm]				
Temperature (℃)	Voltage(V)	Antenna Measured Power (dBm)	Antenna Gain(dBi)	EIRP(dBm)		
T Nor (25℃)	3.70	0.82	0.00	0.82		
T min(-20℃)	3.70	0.79	0.00	0.79		
T Max (+40℃)	3.70	0.86	0.00	0.86		
Result		PASS				
Limit			20dBm			

Note :1. Measured Power include the cable loss.

4.1.2. Duty Cycle,TX-sequence,TX-gap

<u>LIMIT</u>

ETSI EN 300 328 Sub-clause 4.3.2.4

The Duty Cycle shall be equal to or less than the maximum value declared by the supplier. The maximum Tx-sequence Time and the minimum Tx-gap Time shall be according to the formula below:

Maximum Tx-Sequence Time = Minimum Tx-gap Time = M

where M is in the range of 3,5 ms to 10 ms.

Duty Cycle is defined as the ratio of the total transmitter 'on'-time to a 1 second observation period. Tx-sequence is defined as a period in time during which a single or multiple transmissions may occur and which shall be followed by a Tx-gap.

Tx-gap is defined as a period in time during which no transmissions occur.

NOTE: The maximum Duty Cycle at which the equipment can operate, is declared by the supplier.

These requirements apply to non-adaptive equipment or to adaptive equipment when operating in a nonadaptive mode. The equipment is using wide band modulations other than FHSS.

These requirements do not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p.

Medical devices requiring reverse compatibility with other medical devices placed on the market when earlier versions of the present document were harmonised, are allowed to have an operating mode in which they do not have to comply with the requirements for Duty Cycle, Tx-sequence and Tx-gap.

TEST PROCEDURE

Please refer to ETSI EN 300 328 Sub-clause 5.4.2.2.1

For systems using wide band modulations other than FHSS, the measurement shall be performed at the lowest, the middle, and the highest channel on which the equipment can operate. These frequencies shall be recorded.

The test procedure, which shall only be performed for non-adaptive systems and only to be performed at normal environmental conditions, shall be as follows:

Step 1:

• Use the same stored measurement samples from the procedure described in clause 5.4.2.2.1.1.

Step 2:

• Between the saved start and stop times of each individual burst, calculate the TxOn time. Save these TxOn values.

• Between the saved stop and start times of two subsequent bursts, calculate the TxOff time. Save these TxOff values.

Step 3:

• Duty Cycle is the sum of all TxOn times divided by the observation period defined in clauses 4.3.1.3.1 or 4.3.2.4.1.

• For equipment using blacklisting, the TxOn time measured for a single (and active) hopping frequency shall be multiplied by the number of blacklisted frequencies. This value shall be added to the sum calculated in the previous bullet point. If the number of blacklisted frequencies cannot be determined, the minimum number of hopping frequencies as defined in clause 4.3.1.3.2 shall be assumed.

• The above calculated value for Duty Cycle shall be recorded in the test report. This value shall be equal to or less than the maximum value declared by the supplier.

Step 4:

• Any TxOff time that is greater than the minimum Tx-gap time is considered a Tx-gap. The lowest Tx-gap time shall be recorded in the test report. The minimum Tx-gap time is defined in clauses 4.3.1.3.2 or 4.3.2.4.2.

• The Tx-sequence time is the time between two subsequent Tx-gaps. The maximum Tx-sequence time shall be recorded in the test report. Any Tx-sequence shall be shorter than the value defined in clauses 4.3.1.3.2 or 4.3.2.4.2.

EUT DESCRIPTION:

Mode:	BT Test mode
Test Channel	Channel 00(2402MHz), Channel 19(2440MHz), Channel 39(2480MHz)
Modulation:	GFSK

MEASUREMENT DESCRIPTION

Instrument:	Power Meter measuring average burst Power of a least 10 packets		
Dorformodi	\boxtimes	Conducted	
Performed:		Radiated (only if no conducted sample is provided)	

TEST RESULTS

This requirement do not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. So this requirement do not apply for EUT.

4.1.3. Medium Utilisation (MU) factor

<u>LIMIT</u>

ETSI EN 300 328 Sub-clause 4.3.2.5

For non-adaptive equipment using wide band modulations other than FHSS, the maximum Medium Utilisation factor shall be 10 %.

The Medium Utilisation (MU) factor is a measure to quantify the amount of resources (Power and Time) used by non-adaptive equipment. The Medium Utilisation factor is defined by the formula:

MU = (P/100 mW) × DC

where: MU is Medium Utilisation.

P is the RF output power as defined in clause 4.3.2.1.1 expressed in mW.

DC is the Duty Cycle as defined in clause 4.3.2.3.1 expressed in %.

NOTE: The equipment may have dynamic behaviour with regard to duty cycle and corresponding power level. See clause 5.3.1 i).

This requirement does not apply to adaptive equipment unless operating in a non-adaptive mode.

In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p.

Medical devices requiring reverse compatibility with other medical devices placed on the market when earlier versions of the present document were harmonised, are allowed to have an operating mode in which they have a Medium Utilisation above the limit defined in clause 4.3.2.4.2.

TEST PROCEDURE

Please refer to ETSI EN 300 328 Sub-clause 5.4.2.2.1.4

Step 1:

• Use the same stored measurement samples from the procedure described in clause 5.4.2.2.1.1.

Step 2:

• For each burst calculate the product of (P_{burst}/100 mW) and the TxOn time.

NOTE: Pburst is expressed in mW. TxOn time is expressed in ms.

Step 3:

• Medium Utilisation is the sum of all these products divided by the observation period (expressed in ms) which is defined in clauses 4.3.1.2.1 or 4.3.2.3.1. This value, which shall comply with the limit given in clauses 4.3.1.5.2 or 4.3.2.4.2, shall be recorded in the test report.

MEASUREMENT DESCRIPTION

Instrument:	Power Meter measuring average burst Power of a least 10 packets		
Dorformod:	\square	Conducted	
Performed:		Radiated (only if no conducted sample is provided)	

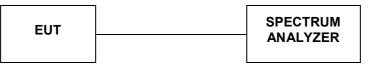
TEST RESULTS

This requirement do not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. So this requirement do not apply for EUT.

4.1.4. Power Spectral Density

<u>LIMIT</u>

ETSI EN 300 328 Sub-clause 4.3.2.3


For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10 dBm per MHz

The Power Spectral Density is the mean equivalent isotropically radiated power (e.i.r.p.) spectral density during a transmission burst.

These measurements shall only be performed at normal test conditions.

The measurement shall be repeated for the equipment being configured to operate at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded.

TEST CONFIGURATION

TEST PROCEDURE

Please refer to ETSI EN 300 328 Sub-clause 5.4.3.2.1

The transmitter shall be connected to a spectrum analyser and the Power Spectral Density as defined in clause 4.3.2.2 shall be measured and recorded.

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- Start Frequency: 2 400 MHz
- Stop Frequency: 2 483,5 MHz
- Resolution BW: 10 kHz
- Video BW: 30 kHz
- Sweep Points: > 8 350

NOTE: For spectrum analysers not supporting this number of sweep points, the frequency band may be segmented.

- Detector: RMS
- Trace Mode: Max Hold
- Sweep time: Auto

For non-continuous signals, wait for the trace to be completed. Save the (trace) data set to a file. **Step 2:**

For conducted measurements on smart antenna systems using either operating mode 2 or 3 (see clause 5.1.3.2), repeat the measurement for each of the transmit ports. For each frequency point, add up the amplitude (power) values for the different transmit chains and use this as the new data set.

Step 3:

Add up the values for amplitude (power) for all the samples in the file.

Step 4:

Normalize the individual values for amplitude so that the sum is equal to the RF Output Power (e.i.r.p.) measured in clause 5.4.2.

Step 5:

Starting from the first sample in the file (lowest frequency), add up the power of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to #100). This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded. **Step 6:**

Shift the start point of the samples added up in step 5 by 1 sample and repeat the procedure in step 5 (i.e. sample #2 to #101).

Step 7:

Repeat step 6 until the end of the data set and record the radiated Power Spectral Density values for each of the 1 MHz segments.

From all the recorded results, the highest value is the maximum Power Spectral Density for the UUT. This value, which shall comply with the limit given in clause 4.3.2.3.2, shall be recorded in the test report.

EUT DESCRIPTION:

Mode:	BT Test mode
Test Channel	Channel 00(2402MHz), Channel 19(2440MHz), Channel 39(2480MHz)
Modulation:	GFSK

MEASUREMENT DESCRIPTION

Instrument:	Spectrum Analyzer	
Detector:	RMS	
Sweep time:	auto	
Video bandwidth:	30KHz	
Resolution bandwidth:	10KHz	
Span:	83.5MHz	
Frequency range	2400-2483.5MHz	
Sweep Points	15000	
Performed:	Conducted	
Fenomea.		Radiated (only if no conducted sample is provided)

TEST RESULTS

	Test Mode:GFSK					
Antenna Ga	ain:0.00 dBi	Te	Test Method: Conducted			
Test Tempe	rature: 25°C		Test Voltage:3.70V			
	The Max	imum Power Spectra	I Density			
Test Channel Number	Test Frequency (MHz)	Measured Power Density (dBm/MHZ) Antenna Gain(dBi) EIRP Density (dBm/MHz)				
00	2402	0.48	0.00	0.48		
19	2440	-0.14	0.00	-0.14		
39	2480	1.16	0.00	1.16		
Result		PASS				
Limit			10dBm/MHz			

Note :1. Measured Power include the cable loss.

4.1.5. Adaptivity

Requirements & Limits

ETSI EN 300 328 Sub-4.3.2.6

The frequency range of the equipment is determined by the lowest and highest Non-LBT based Detect and Avoid

1. During normal operation, the equipment shall evaluate the presence of a singnal on its current operating channel. If it is determined that a signal is present with a level above the detection threshold defined in step 5 the channel shall be marked as 'unavallable'

2. The channel shall remain unavailable for a minimum time equal to 1 second after which the channel may be considered again as an 'available' channel;

3. COT \leq 40 ms;

4. Idle Period = 5% of COT of the Channel Occupancy Time with a minimum of 100 μ s; After this, the procedure as in step 1 needs to be repeated.

5. Detection threshold level = -70dBm/MHz + (20dBm – Pout e.i.r.p)/1MHz (Pout in dBm);

LBT based Detect and Avoid (Frame Based Equipment):

1. Minimum Clear Channel Assessment (CCA) time \geq 18 us;

2. The equipment is allowed to continue Short Control Signalling Transmissions on this channel providing it complies with the requirements given in clause 4.3.2.6.4(If implemented, Short Control Signalling Transmissions of adaptive equipment using wide band modulations other than FHSS shall have a maximum TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms.);

3. COT = $1 \sim 10$ ms; Idle Period = 5% of COT;

4. Control frames are allowed but data frames are not allowed;CCA≤COT,

5 .Detection threshold level = -70dBm/MHz + (20dBm - Pout e.i.r.p)/1MHz (Pout in dBm);

LBT based Detect and Avoid (Load Based Equipment):

1. Minimum Clear Channel Assessment (CCA) time \geq 18 us;

2. The equipment is allowed to continue Short Control Signalling Transmissions on this channel providing it complies with the requirements given in clause 4.3.2.6.4(If implemented, Short Control Signalling Transmissions of adaptive equipment using wide band modulations other than FHSS shall have a maximum TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms.);

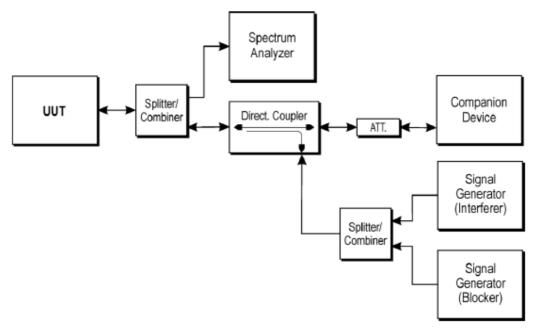
3. COT \leq 13ms, after which the device shall perform a new CCA as described in step 1

4. Control frames are allowed but data frames are not allowed;CCA≤COT;

5. Detection threshold level = -70dBm/MHz + (20dBm – Pout e.i.r.p)/1MHz (Pout in dBm).

Unwanted Signal

Adaptive equipment using wide band modulations other than FHSS, shall comply with the requirements defined in clause 4.3.2.6.2 (non-LBT based DAA) or clause 4.3.2.6.3 (LBT based DAA) in the presence of a blocking signal with characteristics as provided in below.



Page 20 of 36

Unwanted Signal parameters

Wanted signal mean power from companion device		Unwanted signal frequency (MHz)	Unwanted CW signal power (dBm)	
sufficient t	o maintain the link	2 395 or 2 488,5	-35	
(see note	2)	(see note 1)	(see note 3)	
NOTE 1.	IOTE 1: The highest frequency shall be used for testing operating within the range 2 400 MHz to 2 442 MHz, while the lowes frequency shall be used for testing operating channels wit range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1.			
NOTE 2:	A typical value wh	ich can be used in most	cases is -50 dBm/MHz.	
NOTE 3: The level specified		surements, this level ha	he UUT antenna. In case s to be corrected by the	

TEST CONFIGURATION:

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 Sub-clause 5.3.7 for the measurement method.

 $\begin{array}{l} \mathsf{RBW:} \geq \mathsf{Occupied \ Channel \ Bandwidth} \ (if the analyser does not support this setting, the highest available setting shall be used) (10MHz) \\ \mathsf{VBW:} \ 3 \times \mathsf{RBW} \ (if the analyser does not support this setting, the highest available setting shall be used) (10MHz) \\ \mathsf{Other} \ \mathsf{Other} \ \mathsf{Other} \ \mathsf{RMS} \ \mathsf{Centre \ Frequency: \ Equal to the centre frequency of the operating channel \\ \mathsf{Span:} \ \mathsf{O} \ \mathsf{Hz} \ \mathsf{Sweep \ time:} > \mathsf{Channel \ Occupancy \ Time \ of \ the \ UUT \ Trace \ Mode: \ \mathsf{Clear/Write} \end{array}$

TEST RESULTS

This requirement do not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. So this requirement do not apply for EUT.

4.1.6. Occupied Channel Bandwidth

LIMIT

ETSI EN 300 328 Sub-clause 4.3.2.7.3

The Occupied Channel Bandwidth shall fall completely within the band given in clause 1. In addition, for non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.

This requirement applies to all types of equipment using wide band modulations other than FHSS The Occupied Channel Bandwidth is the bandwidth that contains 99 % of the power of the signal. In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains) measurements need only to be performed on one of the active transmit chains (antenna outputs). For systems using FHSS modulation and which have overlapping channels, special software might be required to force the UUT to hop or transmit on a single Hopping Frequency.

The measurement shall be performed only on the lowest and the highest frequency within the stated frequency range. The frequencies on which the test were performed shall be recorded.

If the equipment can operate with different Occupied Channel Bandwidths (e.g. 20 MHz and 40 MHz), than each channel bandwidth shall be tested separately.

TEST PROCEDURE

Please refer to ETSI EN 300 328 Sub-clause 5.4.7.2.1 Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: The centre frequency of the channel under test
- Resolution BW: ~ 1 % of the span without going below 1 %
- Video BW: 3 × RBW
- Frequency Span: 2 × Occupied Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel)
- Detector Mode: RMS
- Trace Mode: Max Hold

Step 2:

Wait until the trace is completed.

Find the peak value of the trace and place the analyser marker on this peak.

Step 3:

Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

NOTE: Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.

EUT DESCRIPTION:

Mode:	BT Test mode
Test Channel	Channel 00(2402MHz), Channel 39(2480MHz)
Modulation:	GFSK

MEASUREMENT DESCRIPTION

Instrument:	Spectrum Analyzer
Detector:	RMS
Sweep time:	auto

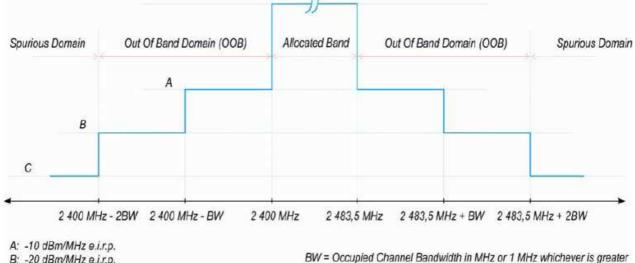
Page 22 of 36

Video bandwidth:	100KHz	
Resolution bandwidth:	30KHz	
Span:	2 MHz	
Center:	Transmit channel	
Trace:	Max hold	
Performed:	\square	Conducted
		Radiated (only if no conducted sample is provided)

TEST RESULTS

Mode	Channel	Frequency (MHz)	99% Bandwidth (MHz)	Limits (MHz)	Verdict
GFSK	00	2402	1.03	/	PASS
GrSK	39	2480	1.04	/	PASS

Mode	Channel 00 (MHz)	Channel 39 (MHz)	Limits (MHz)	Verdict
GFSK	2402	2480	FL≥2400MHz and FH≤2483.5MHz	PASS


4.1.7. Transmitter unwanted emissions in the out-of-band domain

LIMIT

ETSI EN 300 328 Sub-clause 4.3.2.8.3

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 1.

NOTE: Within the 2 400 MHz to 2 483,5 MHz band, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.2.6.

B: -20 dBm/MHz e.i.r.p.

C: Spurious Domain limits

Figure 1: Transmit mask

Transmitter unwanted emissions in the out-of-band domain are emissions when the equipment is in Transmit mode, on frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious.

These measurements have to be performed at normal environmental conditions and shall be repeated at the extremes of the operating temperature range.

In the case of equipment intended for use with an integral antenna and where no external (temporary) antenna connectors are provided, a test fixture as described in clause B.3 may be used to perform relative measurements at the extremes of the operating temperature range.

For systems using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For systems using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These frequencies shall be recorded. The equipment shall be configured to operate under its worst case situation with respect to output power. If the equipment can operate with different Occupied Channel Bandwidths (e.g. 20 MHz and 40 MHz), than each channel bandwidth shall be tested separately.

TEST PROCEDURE

Please refer to ETSI EN 300 328 Sub-clause 5.4.8.2.1

The Out-of-band emissions within the different horizontal segments of the mask provided in figures 1 and 3 shall be measured using the steps below. This method assumes the spectrum analyser is equipped with the Time Domain Power option.

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

• Centre Frequency: The centre frequency of the channel under test

Centre Frequency: 2 484 MHz Span: 0 Hz Resolution BW: 1 MHz Filter mode: Channel filter

Page 24 of 36

Video BW: 3 MHz Detector Mode: RMS Trace Mode: Clear / Write Sweep Mode: Continuous Sweep Points: 5 000 Trigger Mode: Video trigger

NOTE 1: In case video triggering is not possible, an external trigger source may be used. Sweep Time: Suitable to capture one transmission burst

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

• Adjust the trigger level to select the transmissions with the highest power level.

• For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.

• Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.

• Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.

• Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)

• Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz.

Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

• Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

• Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.

Step 6:

• In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.

• In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:

Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figures 1 or 3.

Option 2: the limits provided by the mask given in figures 1 or 3 shall be reduced by 10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits

NOTE 2: Ach refers to the number of active transmit chains.

EUT DESCRIPTION:

Mode:	BT Test mode
Test Channel	Channel 00(2402MHz), Channel 39(2480MHz)
Modulation:	GFSK

MEASUREMENT DESCRIPTION

Instrument:	Spectrum Analyzer			
Detector:	RMS			
Sweep time:	depending on packet length			
Video bandwidth:	3MHz			
Resolution bandwidth:	1MHz			
Span:	0Hz			
Center:	fc (see result table)			
Trace:	Trigger to burst			
Sweep points:	5000			
Performed:	⊠ Conducted			
Perionneu.	Radiated (only if no conducted sample is provided)			

TEST RESULTS

GFSK							
Test conditions		Frequency range (MHz)					
Voltage (V)	Temperature (℃)	Start	Stop	Level (dBm)	Limit (dBm)	Result	
		2400-20BW	2400-OBW	*	-20	Pass	
	25	2400-OBW	2400	*	-10	Pass	
	25	2484	2484+OBW	*	-10	Pass	
		2484+OBW	2484+20BW	*	-20	Pass	
		2400-2OBW	2400-OBW	*	-20	Pass	
2 70	-20	2400-OBW	2400	*	-10	Pass	
3.70		2484	2484+OBW	*	-10	Pass	
		2484+OBW	2484+20BW	*	-20	Pass	
	10	2400-2OBW	2400-OBW	*	-20	Pass	
		2400-OBW	2400	*	-10	Pass	
	40	2484	2484+OBW	*	-10	Pass	
		2484+OBW	2484+20BW	*	-20	Pass	

Note:* Radiant level is far less than the limit, has more than 20 dB margin

4.1.8. Transmitter unwanted emissions in the spurious domain

<u>Limit</u>

ETSI EN 300 328 Sub-clause 4.3.2.9.2

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 4 Table 4: Transmitter limits for spurious emissions

Frequency range	Maximum power, e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
18 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12.75 GHz	-30 dBm	1 MHz

Transmitter unwanted emissions in the spurious domain are emissions outside the allocated band and outside the out-of-band domain as indicated in figure 1 when the equipment is in Transmit mode.

These measurements shall only be performed at normal test conditions.

For systems using FHSS modulation, the measurements may be performed when normal hopping is disabled. In this case measurements need to be performed when operating at the lowest and the highest hopping frequency. When this is not possible, the measurement shall be performed during normal operation (hopping). For systems using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These frequencies shall be recorded. The equipment shall be configured to operate under its worst case situation with respect to output power. If the equipment can operate with different Occupied Channel Bandwidths (e.g. 20 MHz and 40 MHz), then the equipment shall be configured to operate under its worst case situation with respect to spurious emissions.

TEST PROCEDURE

Please refer to ETSI EN 300 328 Sub-clause 5.3.9.2.1 & 5.3.9.2.2

In case of conducted measurements, the radio equipment shall be connected to the measuring equipment via a suitable attenuator.

The spectrum in the spurious domain (see figures 1 or 3) shall be searched for emissions that exceed the limit values given in tables 1 or 4 or that come to within 6 dB below these limits. Each occurrence shall be recorded.

Pre-scan

The test procedure below shall be used to identify potential unwanted emissions of the UUT.

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 1 or 4.

Step 2:

The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:

- Resolution bandwidth: 100 kHz
- Video bandwidth: 300 kHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep Points: ≥ 9 970

NOTE 1: For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

• Sweep time:

Page 27 of 36

For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT.

For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on the same hopping frequency in different hopping sequences.

Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.10.2.1.2 and compared to the limits given in tables 1 or 4.

Step 3

The emissions over the range 1 GHz to 12,75 GHz shall be identified.

- Spectrum analyser settings:Resolution bandwidth: 1 MHz
- Resolution bandwidth: 1 Mile
 Video bandwidth: 3 MHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep Points: ≥ 11 750

NOTE 2: For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

• Sweep time:

For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 1 MHz frequency step, the measurement time is greater than two transmissions of the UUT.

For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on the same hopping frequency in different hopping sequences.

Allow the trace to stabilize. Any emissions identified during the sweeps above that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.9.2.1.2 and compared to the limits given in tables 1 or 4.

Frequency Hopping equipment may generate a block (or several blocks) of spurious emissions anywhere within the spurious domain. If this is the case, only the highest peak of each block of emissions shall be measured using the procedure in clause 5.3.9.2.1.2.

Step 4:

• In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the steps 2 and 3 need to be repeated for each of the active transmit chains (Ach). The limits used to identifyemissions during this pre-scan need to be reduced with 10 × log10 (Ach) (number of active transmit chains).

Measurement of the emissions identified during the pre-scan

The steps below shall be used to accurately measure the individual unwanted emissions identified during the pre-scan measurements above.

Step 1:

The level of the emissions shall be measured using the following spectrum analyser settings:

- Centre Frequency: Frequency of emission identified during the pre-scan
- Resolution Bandwidth: 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)
- Video Bandwidth: 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)
- Frequency Span: Wide enough to capture each individual emission indentified during the pre-scan
- Sweep mode: Continuous
- Sweep time: Auto
- Trigger: Free run
- Detector: RMS
- Trace Mode: Max Hold

Step 2:

In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the step 1 needs to be repeated for each of the active transmit chains (Ach).

The trace data for each transmit chain has to be recorded.

Sum the power in each of the traces for each individual frequency bin.

Step 3:

Use the marker function to find the highest peak within the measurement trace and record its value and its frequency.

Step 4:

The measured values shall be compared to the limits defined in tables 1 and 4.

EUT DESCRIPTION:

Mode:	BT Test mode
Test Channel	Channel 00(2402MHz), Channel 39(2480MHz)
Modulation:	GFSK
Assumed antenna gain:	0 dBi

MEASUREMENT DESCRIPTION

Instrument:	Spectrum Analyzer			
Detector:	Peak for prescan / RMS for emission retest			
Sweep time:	Auto			
Video bandwidth:	Below 1 GHz: 300 kHz / above 3MHz			
Resolution bandwidth:	Below 1 GHz: 100 kHz / above 1MHz			
Trace:	Max hold			
Sweep points:	40001			
Performed:	\square	Conducted		
	\square	Radiated		

TEST RESULTS

Pass

Coducted Spurious Emissions		
Measured Modulation	GFSK	
Radioation Spurious Emissions		

Measured Modulation	⊠GFSK	

Page 29 of 36

Coducted Spurious Emissions:

	CH00						
Sus	Suspected List						
NO.	Freq. [MHz]	Result Level [dBm]	Limit [dBm]	Margin [dB]			
1	4824.00	-41.86	-30.00	11.86			
2	7236.00	-56.81	-30.00	26.81			

11b CH13							
Sus	Suspected List						
NO.	Freq. [MHz]	Result Level [dBm]	Limit [dBm]	Margin [dB]			
1	4951.875	-45.43	-30.00	15.43			
2	7450.356	-57.38	-30.00	27.38			

Radioation Spurious Emissions

	CH39 Horizontal/ Vertical						
	Suspected List						
	NO.	Freq. [MHz]	Result Level [dBm]	Factor [dB]	Limit [dBm]	Margin [dB]	Polarity
	1	4804.00	-49.75	14.03	-30.00	19.75	Horizontal
-	2	7206.00	-52.86	23.18	-30.00	22.86	Vertical

	CH39 Horizontal/ Vertical					
Sus	Suspected List					
NO.	Frag Result Level Factor Limit Margin				Polarity	
1	4960.000	-49.67	15.17	-30.00	19.67	Vertical
2	7440.000	-51.83	24.65	-30.00	21.83	Vertical

4.1.9. Receiver spurious emissions

LIMIT

ETSI EN 300 328 Sub-clause 4.3.2.10.2

The spurious emissions of the receiver shall not exceed the values given in table 5.

Table 5: Spurious emission limits for receivers

Frequency range	Maximum power e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

These measurements shall only be performed at normal test conditions.

Testing shall be performed when the equipment is in a receive-only mode.

For systems using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These frequencies shall be recorded. For systems using FHSS modulation, the measurements may be performed when normal hopping is disabled. In this case measurements need to be performed when operating at the lowest and the highest hopping frequency. These frequencies shall be recorded. When disabling the normal hopping is not possible, the measurement shall be performed during normal operation (hopping).

TEST CONFIGURATION

The same as described in section 4.1.8

TEST PROCEDURE

The same as described in section 4.1.8

EUT DESCRIPTION:

Mode:	BT Test mode		
Test Channel	Channel 00(2402MHz), Channel 39(2480MHz)		
Modulation:	GFSK		
Assumed antenna gain:	0 dBi		

MEASUREMENT DESCRIPTION

Instrument:	Spectrum Analyzer			
Detector:	Peak for prescan / RMS for emission retest			
Sweep time:	Auto	Auto		
Video bandwidth:	Below 1 GHz: 300 kHz / above 3MHz			
Resolution bandwidth:	Below 1 GHz: 100 kHz / above 1MHz			
Trace:	Max hold			
Sweep points:	40001			
Performed:	\square	Conducted		
Periormea.		Radiated (only if no conducted sample is provided)		

TEST RESULTS

Pass Coducted Spurious Emissions		
Measured Modulation	GFSK	

Radioation Spurious Emissions

Measured Modulation	⊠GFSK

Page 31 of 36

Coducted Spurious Emissions

CH00							
Sus	pected Lis	t					
NO.	Freq. [MHz]	Result Level [dBm]	Limit [dBm]	Margin [dB]			
1	43.162	-79.19	-57.00	22.19			
2	115.864	-75.63	-57.00	18.63			
3	1018.943	-61.52	-47.00	14.52			
4	2713.043	-55.04	-47.00	8.04			

CH39						
Suspected List						
NO.	Freq. [MHz]	Result Level [dBm]	Limit [dBm]	Margin [dB]		
1	48.461	-76.31	-57.00	19.31		
2	108.513	-86.27	-57.00	28.27		
3	1892.349	-62.67	-47.00	15.67		
4	9708.319	-54.52	-47.00	7.52		
	NO. 1 2 3	NO. Freq. [MHz] 1 48.461 2 108.513 3 1892.349	Suspected List NO. Freq. [MHz] Result Level [dBm] 1 48.461 -76.31 2 108.513 -86.27 3 1892.349 -62.67	Suspected List NO. Freq. [MHz] Result Level [dBm] Limit [dBm] 1 48.461 -76.31 -57.00 2 108.513 -86.27 -57.00 3 1892.349 -62.67 -47.00	Suspected List NO. Freq. [MHz] Result Level [dBm] Limit [dBm] Margin [dB] 1 48.461 -76.31 -57.00 19.31 2 108.513 -86.27 -57.00 28.27 3 1892.349 -62.67 -47.00 15.67	

Radioation Spurious Emissions:

	СН00							
	Horizontal/ Vertical							
Su	Suspected List							
NO	Freq. [MHz]	Result Level [dBm]	Factor [dB]	Limit [dBm]	Margin [dB]	Polarity		
1	69.41	-72.69	-0.67	-57.00	15.69	Vertical		
2	372.19	-73.28	-6.09	-57.00	16.28	Horizontal		

CH39								
Horizontal/ Vertical								
Suspected List								
NO.	Freq. [MHz]	Result Level [dBm]	Factor [dB]	Limit [dBm]	Margin [dB]	Polarity		
1	78.12	-75.61	-0.71	-57.00	18.61	Vertical		
2	269.51	-78.70	-5.92	-57.00	21.70	Horizontal		

4.1.10. Receiver Blocking

<u>Limits</u>

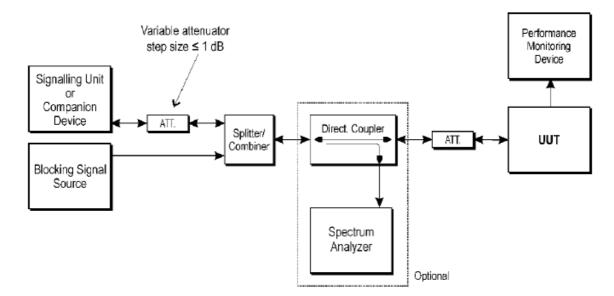
ETSI EN 300 328 Sub-4.3.2.11.4

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in follow

Receiver Category 1

	ted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBr	n + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504		
(-139 dBr	n + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	whichever is less 2 524		CW
NOTE 1: NOTE 2:	OCBW is in Hz. In case of radiated measurements signal from the companion device of using a wanted signal up to P _{min} +	annot be determine	ed, a relative test ma	y be performed
NOTE 3:	required to meet the minimum perfer absence of any blocking signal. In case of radiated measurements signal from the companion device of using a wanted signal up to P _{min} + required to meet the minimum perfer absence of any blocking signal.	using a companion cannot be determine 20 dB where P _{min} is	device and the level ed, a relative test ma s the minimum level	of the wanted by be performed of wanted signal
NOTE 4:	The level specified is the level at the assembly gain. In case of conducter (in-band) antenna assembly gain (equivalent to a power flux density (configured/positioned as recorded	ed measurements, t G). In case of radiat PFD) in front of the	his level has to be co red measurements, th	prrected for the his level is

Receiver Category 2


	ed signal mean power from mpanion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
	n + 10 × log ₁₀ (OCBW) + 10 dB) Bm + 10 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584		CW
NOTE 2:	OCBW is in Hz. In case of radiated measurement wanted signal from the company may be performed using a want minimum level of wanted signal as defined in clause 4.3.1.12.3 in The level specified is the level at assembly gain. In case of condu- for the (in-band) antenna assem- this level is equivalent to a power with the UUT being configured/p	ion device car ed signal up to required to m in the absence at the UUT rec ucted measure ably gain (G). er flux density	not be determine o P _{min} + 26 dB wh eet the minimum of any blocking eiver input assume ements, this level In case of radiate (PFD) in front of	ed, a relative test here P _{min} is the performance criteria signal. hing a 0 dBi antenna has to be corrected d measurements, the UUT antenna

Receiver Category 3

	Wanted signal mean power from companion device (dBm) (see notes 1 and 3)		Blocking signal power (dBm) (see note 3)	Type of blocking signal
	n + 10 × log ₁₀ (OCBW) + 20 dB) Bm + 20 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW
NOTE 2:	OCBW is in Hz. In case of radiated measurement wanted signal from the company may be performed using a want minimum level of wanted signal criteria as defined in clause 4.3. The level specified is the level at assembly gain. In case of condu- for the (in-band) antenna assem- this level is equivalent to a power with the UUT being configured/p	ion device cann ed signal up to required to mee 1.12.3 in the ab t the UUT recei ucted measurem ably gain (G). In er flux density (F	ot be determined P _{min} + 30 dB whe et the minimum p sence of any blo ver input assumi nents, this level h case of radiated PFD) in front of th	d, a relative test ere P _{min} is the performance ocking signal. Ing a 0 dBi antenna has to be corrected I measurements, he UUT antenna

TEST CONFIGURATION:

TEST PROCEDURE

Please refer to ETSI EN 300 328 Sub-clause 5.4.11.2.1 for the measurement method.

TEST RESULTS

Page 36 of 36

According to Sub 4.2.3, The Power of the EUT is less than 10dB, So it belongs to Receiver category 2

Test frequency	2402MHz		Test mode	Normal link	
Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Limit(PER)	test value(PER)	Result
-139 dBm + 10 ×	2380		10%	1%	PASS
	2504	-34	10%	2%	PASS
log10(OCBW) + 10 dB	2300	-34	10%	1%	PASS
UD	2584		10%	2%	PASS

Test frequency	2480MHz		Test mode	Normal	link
Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Limit(PER)	test value(PER)	Result
120 dDm + 10 x	2380		10%	1%	PASS
$-139 \text{ dBm} + 10 \times$	2504	-34	10%	2%	PASS
log10(OCBW) + 10 dB	2300	-34	10%	2%	PASS
uD	2584		10%	1%	PASS

5. Photos of the EUT

Reference to the test report No. HTT202012207E-1

.....End of Report.....